208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The role of 14-3-3β in acute asthma in children and analysis of the risk factors for asthma exacerbation

, MMedORCID Icon, , MMedORCID Icon, , MMedORCID Icon, , MMedORCID Icon, , MMedORCID Icon, , MMedORCID Icon & , MDORCID Icon show all
Received 07 Dec 2023, Accepted 10 May 2024, Published online: 05 Jun 2024

References

  • Soriano JB, Abajobir AA, Abate KH, Abera SF, Agrawal A, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Alam K, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med 2017;5(9):691–706. doi:10.1016/s2213-2600(17)30293-x.
  • Asher MI, García-Marcos L, Pearce NE, Strachan DP. Trends in worldwide asthma prevalence. Eur Respir J 2020;56(6):2002094. doi:10.1183/13993003.
  • Asher MI, Rutter CE, Bissell K, Chiang C-Y, El Sony A, Ellwood E, Ellwood P, García-Marcos L, Marks GB, Morales E, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet 2021;398(10311):1569–1580. doi:10.1016/s0140-6736(21)01450-1.
  • Pijnenburg MW, Fleming L. Advances in understanding and reducing the burden of severe asthma in children. Lancet Respir Med 2020;8(10):1032–1044. doi:10.1016/s2213-2600(20)30399-4.
  • King-Biggs MB. Asthma. Ann Intern Med 2019;171(7):ITC49–ITC64. doi:10.7326/aitc201910010.
  • Jones H, Lawton A, Gupta A. Asthma attacks in children—challenges and opportunities. Indian J Pediatr 2022;89(4):373–377. doi:10.1007/s12098-021-04069-w.
  • Farion KJ, Wilk S, Michalowski W, O’Sullivan D, Sayyad-Shirabad J. Comparing predictions made by a prediction model, clinical score, and physicians. Appl Clin Inform 2013;4(3):376–391. doi:10.4338/aci-2013-04-ra-0029.
  • Wang W, Shakes DC. Molecular evolution of the 14-3-3 protein family. J Mol Evol 1996;43(4):384–398. doi:10.1007/BF02339012.
  • Kataki A, Karagiannidis I, Memos N, Koniaris E, Antonakis P, Papalois A, Zografos GC, Konstadoulakis MM. Host’s endogenous caveolin-1 expression is downregulated in the lung during sepsis to promote cytoprotection. Shock 2018;50(2):199–208. doi:10.1097/shk.0000000000001005.
  • Asdaghi N, Kilani RT, Hosseini-Tabatabaei A, Odemuyiwa SO, Hackett T-L, Knight DA, Ghahary A, Moqbel R. Extracellular 14-3-3 from human lung epithelial cells enhances MMP-1 expression. Mol Cell Biochem 2011;360(1-2):261–270. doi:10.1007/s11010-011-1065-1.
  • He SCY, Tong X, Jiang Z. Effect of budesonide on 14-3-3 protein and 14-3-3β mRNA expression in asthmatic Rat lung tissue. J Pediatr Pharm 2016;22:5–7. doi:10.13407/j.cnki.jpp.1672-108X.2016.06.002.
  • Wang D, Rao L, Cui Y, Tang G, Huang H, Yuan T, Mo B. Serum 14-3-3β protein: a new biomarker in asthmatic patients with acute exacerbation in an observational study. Allergy Asthma Clin Immunol 2021;17(1):104–105. doi:10.1186/s13223-021-00608-4.
  • Global Initiative for Asthma. Global strategy for asthma management and prevention 2021. Available from: https://ginasthma.org/pocket-guide-for-asthma-management-and-prevention/ [last accessed 15 September 2021].
  • Beydon N, Davis SD, Lombardi E, Allen JL, Arets HGM, Aurora P, Bisgaard H, Davis GM, Ducharme FM, Eigen H, et al. An Official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med 2007;175(12):1304–1345. doi:10.1164/rccm.200605-642ST.
  • American Thoracic Society ERS. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005;171:912–930. doi:10.1164/rccm.200406-710ST.
  • Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, Enright PL, Hankinson JL, Ip MSM, Zheng J, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 2012;40(6):1324–1343. doi:10.1183/09031936.00080312.
  • Pelaia C, Vatrella A, Crimi C, Gallelli L, Terracciano R, Pelaia G. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med 2020;14(5):501–510. doi:10.1080/17476348.2020.1735365.
  • Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000;40(1):617–647. doi:10.1146/annurev.pharmtox.40.1.617.
  • Murata K, Yoshitomi H, Furu M, Ishikawa M, Shibuya H, Ito H, Matsuda S. MicroRNA-451 down-regulates neutrophil chemotaxis via p38 MAPK. Arthritis Rheumatol 2014;66(3):549–559. doi:10.1002/art.38269.
  • Gao K, Tang W, Li Y, Zhang P, Wang D, Yu L, Wang C, Wu D. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils. J Cell Sci 2015;128(5):992–1000. doi:10.1242/jcs.161497.
  • Jendzjowsky NG, Kelly MM. The role of airway myofibroblasts in asthma. Chest 2019;156(6):1254–1267. doi:10.1016/j.chest.2019.08.1917.
  • Li J, Gong X. 14-3-3β Is necessary in the regulation of polarization and directional migration of alveolar myofibroblasts by lipopolysaccharide. Exp Lung Res 2020;46(1-2):1–10. doi:10.1080/01902148.2019.1711464.
  • Gaillard EA, Kuehni CE, Turner S, Goutaki M, Holden KA, de Jong CCM, Lex C, Lo DKH, Lucas JS, Midulla F, et al. European Respiratory Society clinical practice guidelines for the diagnosis of asthma in children aged 5–16 years. Eur Respir J 2021;58(5):2004173. doi:10.1183/13993003.04173-2020.
  • Fielding S, Pijnenburg M, de Jongste JC, Pike KC, Roberts G, Petsky H, Chang AB, Fritsch M, Frischer T, Szefler S, et al. Change in FEV1 and feno measurements as predictors of future asthma outcomes in children. Chest 2019;155(2):331–341. doi:10.1016/j.chest.2018.10.009.
  • Sánchez-García S, Habernau Mena A, Quirce S. Biomarkers in inflammometry pediatric asthma: utility in daily clinical practice. Eur Clin Respir J 2017;4(1):1356160. doi:10.1080/20018525.2017.1356160.
  • Lehtimäki L, Csonka P, Mäkinen E, Isojärvi J, Hovi S-L, Ahovuo-Saloranta A. Predictive value of exhaled nitric oxide in the management of asthma: a systematic review. Eur Respir J 2016;48(3):706–714. doi:10.1183/13993003.00699-2016.
  • Lo D, Beardsmore C, Roland D, Richardson M, Yang Y, Danvers L, Wilson A, Gaillard EA. Risk factors for asthma attacks and poor control in children: a prospective observational study in UK primary care. Arch Dis Child 2022;107(1):26–31. doi:10.1136/archdischild-2020-320110.
  • Petsky HL, Kew KM, Chang AB. Exhaled nitric oxide levels to guide treatment for children with asthma. Cochrane Database Syst Rev 2016;11(11):CD011439. doi:10.1002/14651858.CD011439.pub2.
  • Jackson DJ, Humbert M, Hirsch I, Newbold P, Garcia Gil E. Ability of serum IgE concentration to predict exacerbation risk and benralizumab efficacy for ­patients with severe eosinophilic asthma. Adv Ther 2020;37(2):718–729. doi:10.1007/s12325-019-01191-2.
  • Bjerregaard A, Laing IA, Backer V, Sverrild A, Khoo SK, Chidlow G, Sikazwe C, Smith DW, Le Souëf P, Porsbjerg C. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: a prospective cohort study. Clin Exp Allergy 2017;47(8):1007–1013. doi:10.1111/cea.12935.
  • Dragonieri S, Bikov A, Capuano A, Scarlata S, Carpagnano GE. Methodological aspects of induced sputum. Adv Respir Med 2023;91(5):397–406. doi:10.3390/arm91050031.
  • Sinz H, Renz H, Skevaki C. Cellular and noncellular bloodborne biomarkers in asthma. Ann Allergy Asthma Immunol 2017;118(6):672–679. doi:10.1016/j.anai.2017.04.016.
  • de Benedictis FM, Carloni I, Guidi R. Question 4: is there a role for antibiotics in infantile wheeze? Paediatr Respir Rev 2020;33:30–34. doi:10.1016/j.prrv.2019.11.001.
  • Romero-Tapia S, Guzmán Priego C, Del-Río-Navarro B, Sánchez-Solis M. Advances in the relationship ­between respiratory viruses and asthma. J Clin Med 2023;12(17):5501. doi:10.3390/jcm12175501.
  • Khetsuriani N, Kazerouni NN, Erdman DD, Lu X, Redd SC, Anderson LJ, Teague WG. Prevalence of viral ­respiratory tract infections in children with asthma. J Allergy Clin Immunol 2007;119(2):314–321. doi:10.1016/j.jaci.2006.08.041.
  • Soto-Quiros M, Avila L, Platts-Mills TAE, Hunt JF, Erdman DD, Carper H, Murphy DD, Odio S, James HR, Patrie JT, et al. High titers of IgE antibody to dust mite allergen and risk for wheezing among asthmatic children infected with rhinovirus. J Allergy Clin Immunol 2012;129(6):1499.e1495–1505.e1495. doi:10.1016/j.jaci.2012.03.040.
  • de Marco R, Pattaro C, Locatelli F, Svanes C; for the ESG, ECRHS Study Group. Influence of early life ­exposures on incidence and remission of asthma throughout life*. J Allergy Clin Immunol 2004;113(5):845–852. doi:10.1016/j.jaci.2004.01.780.
  • World Health Organization. Asthma. Available from: https://www.who.int/news-room/fact-sheets/detail/asthma [last accessed 1 December 2021].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.