42
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Ginger and its constituents in asthma: a mini-review

, MD, , , , , , , , & , MD show all
Received 23 Mar 2024, Accepted 26 May 2024, Published online: 08 Jun 2024

References

  • Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. doi:10.3389/fped.2019.00246.
  • Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis. 2022;10(12):e750. doi:10.1002/iid3.750.
  • Price D, Thomas M. Breaking new ground: challenging existing asthma guidelines. BMC Pulm Med. 2006;6(Suppl 1):S6. doi:10.1186/1471-2466-6-S1-S6.
  • Farag H, Abd El-Wahab EW, El-Nimr NA, Saad El-Din HA. Asthma action plan for proactive bronchial asthma self-management in adults: a randomized controlled trial. Int Health. 2018;10(6):502–516. doi:10.1093/inthealth/ihy050.
  • Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol. 2020;42(1):5–15. doi:10.1007/s00281-020-00785-1.
  • Yuan Y, Ran N, Xiong L, Wang G, Guan X, Wang Z, Guo Y, Pang Z, Fang K, Lu J, et al. Obesity-related asthma: immune regulation and potential targeted therapies. J Immunol Res. 2018;2018:1943497–1943413. doi:10.1155/2018/1943497.
  • Sun Y-B, Liu M, Fan X-S, Zhou L-P, Li M-W, Hu F-Y, Yue Q-F, Zhang Y-M. Effects of cigarette smoke on the aggravation of ovalbumin-induced asthma and the expressions of TRPA1 and tight junctions in mice. Mol Immunol. 2021;135:62–72. doi:10.1016/j.molimm.2021.04.006.
  • Tang W, Dong M, Teng F, Cui J, Zhu X, Wang W, Wuniqiemu T, Qin J, Yi L, Wang S, et al. TMT-based quantitative proteomics reveals suppression of SLC3A2 and ATP1A3 expression contributes to the inhibitory role of acupuncture on airway inflammation in an OVA-induced mouse asthma model. Biomed Pharmacother. 2021;134:111001.
  • Xiao H, Zhang Q-N, Sun Q-X, Li L-D, Xu S-Y, Li C-Q. Transcriptomic analysis reveals a link between hippo signaling pathway and macrophages in lungs of mice with OVA-induced allergic asthma. J Inflamm Res. 2022;15:423–437. doi:10.2147/JIR.S346505.
  • Abdelmawgood IA, Mahana NA, Badr AM, Mohamed AS, Al Shawoush AM, Atia T, Abdelrazak AE, Sakr HI. Echinochrome ameliorates physiological, immunological, and histopathological alterations induced by ovalbumin in asthmatic mice by modulating the Keap1/Nrf2 signaling pathway. Mar Drugs. 2023;21(8):21. doi:10.3390/md21080455.
  • Jedli O, Ben-Nasr H, Zammel N, Rebai T, Saoudi M, Elkahoui S, Jamal A, Siddiqui AJ, Sulieman AE, Alreshidi MM, et al. Attenuation of ovalbumin-induced inflammation and lung oxidative injury in asthmatic rats by Zingiber officinale extract: combined in silico and in vivo study on antioxidant potential, STAT6, and TNF-α pathways. 3 Biotech. 2022;12(9):191. doi:10.1007/s13205-022-03249-5.
  • Zhu Y, Wang C, Luo J, Hua S, Li D, Peng L, Liu H, Song L. The protective role of Zingerone in a murine asthma model via activation of the AMPK/Nrf2/HO-1 pathway. Food Funct. 2021;12(7):3120–3131. doi:10.1039/D0FO01583K.
  • Wen T, Song L, Hua SJCM. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med. 2021;10(7):2396–2422.
  • Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, Pereira DT, Alencar ÉN, Tsapis N, Egito EST. Use of natural products in asthma treatment. Evid Based Complement Alternat Med. 2020;2020:1021258. doi:10.1155/2020/1021258.
  • Badraoui R, Siddiqui AJ, Bardakci F, Ben-Nasr H. Ethnopharmacology and Ethnopharmacognosy Current Perspectives and Future Prospects. Ethnobot Ethnopharmacol Med Aromat Plants Steps Towar Drug Discov. 2023;115–128
  • Liu Y, Liu J, Zhang Y. Research Progress on Chemical Constituents of Zingiber officinale Roscoe. Biomed Res Int. 2019;2019:5370823. doi:10.1155/2019/5370823.
  • Zammel N, Jedli O, Rebai T, Hamadou WS, Elkahoui S, Jamal A, Alam JM, Adnan M, Siddiqui AJ, Alreshidi MM, et al. Kidney injury and oxidative damage alleviation by Zingiber officinale: pharmacokinetics and protective approach in a combined murine model of osteoporosis. 3 Biotech. 2022;12(5):112. doi:10.1007/s13205-022-03170-x.
  • Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 2008;46(2):409–420. doi:10.1016/j.fct.2007.09.085.
  • Prasad S, Tyagi AK. Ginger and Its Constituents: role in Prevention and Treatment of Gastrointestinal Cancer. Gastroenterol Res Pract. 2015;2015:142979–142911. doi:10.1155/2015/142979.
  • Grzanna R, Lindmark L, Frondoza CG. Ginger—An Herbal Medicinal Product with Broad Anti-Inflammatory Actions. J Med Food. 2005;8(2):125–132. doi:10.1089/jmf.2005.8.125.
  • Govindarajan VS, Connell DW. Ginger—chemistry, technology, and quality evaluation: part 1. Crit Rev Food Sci Nutr. 1982;17(1):1–96. doi:10.1080/10408398209527343.
  • Zammel N, Saeed M, Bouali N, Elkahoui S, Alam JM, Rebai T, Kausar MA, Adnan M, Siddiqui AJ, Badraoui R, et al. Antioxidant and anti-inflammatory effects of Zingiber officinale roscoe and Allium subhirsutum: in silico, biochemical and histological study. Foods. 2021;10(6):1383. doi:10.3390/foods10061383.
  • Connell DW, Sutherland MD. A re-examination of gingerol, shogaol, and zingerone, the pungent principles of ginger (Zingiber officinale Roscoe). Aust J Chem. 1969;22(5):1033–1043. doi:10.1071/CH9691033.
  • Shukla Y, Singh M. Cancer preventive properties of ginger: a brief review. Food Chem Toxicol. 2007;45(5):683–690. doi:10.1016/j.fct.2006.11.002.
  • Mozaffari-Khosravi H, Talaei B, Jalali B-A, Najarzadeh A, Mozayan MR. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement Ther Med. 2014;22(1):9–16. doi:10.1016/j.ctim.2013.12.017.
  • Shalaby EA, Shanab SMM, Hafez RM, El-Ansary AE. Chemical constituents and biological activities of different extracts from ginger plant (Zingiber officinale). Chem Biol Technol Agric. 2023;10(1):14. doi:10.1186/s40538-023-00385-9.
  • Khan AM, Shahzad M, Raza Asim MB, Imran M, Shabbir A. Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharm Biol. 2015;53(3):359–367. doi:10.3109/13880209.2014.920396.
  • Ahui MLB, Champy P, Ramadan A, Pham Van L, Araujo L, Brou André K, Diem S, Damotte D, Kati-Coulibaly S, Offoumou MA, et al. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int Immunopharmacol. 2008;8(12):1626–1632. doi:10.1016/j.intimp.2008.07.009.
  • Yocum GT, Hwang JJ, Mikami M, Danielsson J, Kuforiji AS, Emala CW. Ginger and its bioactive component 6-shogaol mitigate lung inflammation in a murine asthma model. Am J Physiol Lung Cell Mol Physiol. 2019;318(2):L296–L303. doi:10.1152/ajplung.00249.2019.
  • Kim E, Jang S, Yi JK, Kim H, Kwon HJ, Im H, Huang H, Zhang H, Cho NE, Sung Y, et al. Ginger‑derived compounds exert < em > in vivo</em > and < em > in vitro</em > anti‑asthmatic effects by inhibiting the T‑helper 2 cell‑mediated allergic response. Exp Ther Med. 2022;23(1):49. doi:10.3892/etm.2021.10971.
  • Ajayi BO, Olajide TA, Olayinka ET. 6-gingerol attenuates pulmonary inflammation and oxidative stress in mice model of house dust mite-induced asthma. Advances in Redox Research. 2022;5:100036. doi:10.1016/j.arres.2022.100036.
  • Li Z, Liu Z, Uddandrao VVS, Ponnusamy P, Balakrishnan S, Brahmanaidu P, Vadivukkarasi S, Ganapathy S. Asthma-Alleviating Potential of 6-Gingerol: effect on Cytokines, Related mRNA and c-Myc, and NFAT1 Expression in Ovalbumin-Sensitized Asthma in Rats. J Environ Pathol Toxicol Oncol. 2019;38(1):41–50. doi:10.1615/JEnvironPatholToxicolOncol.2018027172.
  • Kardan M, Rafiei A, Ghaffari J, Valadan R, Morsaljahan Z, Haj-Ghorbani ST. Effect of ginger extract on expression of GATA3, T-bet and ROR-γt in peripheral blood mononuclear cells of patients with Allergic Asthma. Allergol Immunopathol. 2019;47(4):378–385. doi:10.1016/j.aller.2018.12.003.
  • Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation. Am J Respir Cell Mol Biol. 2013;48(2):157–163. doi:10.1165/rcmb.2012-0231OC.
  • Shieh, Y-H, Huang, H-M, Lee, C-C, Fan, C-K, Lee, Y-L, Ching-Chiung W. Zerumbone enhances the Th1 response and ameliorates ovalbumin-induced Th2 responses and airway inflammation in mice.Int Immunopharmacol, 2015. 50(2):371–391. doi:10.1016/j.intimp.2014.12.027.
  • Townsend EA, Zhang Y, Xu C, Wakita R, Emala CW. Active components of ginger potentiate β-agonist–induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. Am J Respir Cell Mol Biol. 2013;50(1):115–124. doi:10.1165/rcmb.2013-0133OC.
  • Haque MA, Jantan I, Harikrishnan H, Ghazalee S. Standardized extract of Zingiber zerumbet suppresses LPS-induced pro-inflammatory responses through NF-κB, MAPK and PI3K-Akt signaling pathways in U937 macrophages. Phytomedicine. 2019;54:195–205. doi:10.1016/j.phymed.2018.09.183.
  • Haque MA, Jantan I, Harikrishnan H. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. Int Immunopharmacol. 2018;55:312–322. doi:10.1016/j.intimp.2018.01.001.
  • Kim M-J, Yun J-M. Molecular mechanism of the protective effect of zerumbone on lipopolysaccharide-induced inflammation of THP-1 cell-derived macrophages. J Med Food. 2018;22(1):62–73. doi:10.1089/jmf.2018.4253.
  • Rohhimi W, Tan JW, Liew KY, Jacquet A, Harith HH, Israf DA, Tham CL. Zerumbone attenuates house dust mite extract-induced epithelial barrier dysfunction in 16HBE14o- cells. Immunopharmacol Immunotoxicol. 2021;43(6):813–824. doi:10.1080/08923973.2021.1992633.
  • Wu D, Li S, Liu X, Xu J, Jiang A, Zhang Y, Liu Z, Wang J, Zhou E, Wei Z, et al. Alpinetin prevents inflammatory responses in OVA-induced allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int Immunopharmacol. 2020;89(Pt A):107073. doi:10.1016/j.intimp.2020.107073.
  • Sohn Y, Han N-Y, Lee MJ, Cho H-J, Jung H-S. [6]-Shogaol inhibits the production of proinflammatory cytokines via regulation of NF-κB and phosphorylation of JNK in HMC-1 cells. Immunopharmacol Immunotoxicol. 2013;35(4):462–470. doi:10.3109/08923973.2013.782318.
  • Podlogar JA, Verspohl EJ. Antiinflammatory effects of ginger and some of its components in human Bronchial Epithelial (BEAS-2B) Cells. Phytother Res. 2012;26(3):333–336. doi:10.1002/ptr.3558.
  • Russo R, Costa MA, Lampiasi N, Chiaramonte M, Provenzano A, Mangione MR, Passantino R, Zito F. A new ginger extract characterization: immunomodulatory, antioxidant effects and differential gene expression. Food Biosci. 2023;53:102746. doi:10.1016/j.fbio.2023.102746.
  • Ley-Martínez JS, Ortega-Valencia JE, García-Barradas O, Jiménez-Fernández M, Uribe-Lam E, Vencedor-Meraz CI, Oliva-Ramírez J. Active compounds in zingiber officinale as possible redox inhibitorsof 5-lipoxygenase using an in silico approach. Int J Mol Sci. 2022;23(11):6093. doi:10.3390/ijms23116093.
  • Xing M, Akowuah GA, Gautam V, Gaurav A. Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. J Biomol Struct Dyn. 2017;35(13):2910–2924. doi:10.1080/07391102.2016.1234417.
  • Lee T-Y, Lee K-C, Chen S-Y, Chang H-H. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-α and NF-κB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem Biophys Res Commun. 2009;382(1):134–139. doi:10.1016/j.bbrc.2009.02.160.
  • Leung W-S, Yang M-L, Lee S-S, Kuo C-W, Ho Y-C, Huang-Liu R, Lin H-W, Kuan Y-H. Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway. Int Immunopharmacol. 2017;46:194–200. doi:10.1016/j.intimp.2017.03.008.
  • Ho Y-C, Lee S-S, Yang M-L, Huang-Liu R, Lee C-Y, Li Y-C, Kuan Y-H. Zerumbone reduced the inflammatory response of acute lung injury in endotoxin-treated mice via Akt-NFκB pathway. Chem Biol Interact. 2017;271:9–14. doi:10.1016/j.cbi.2017.04.017.
  • Townsend EA, Emala CW. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4. Am J Physiol Lung Cell Mol Physiol. 2013;305(5):L396–L403. doi:10.1152/ajplung.00125.2013.
  • Naiemur Rahman M, Shahin Ahmed K, Ahmed S, Hossain H, Shahid Ud Daula A. Integrating in vivo and in silico approaches to investigate the potential of Zingiber roseum rhizome extract against pyrexia, inflammation and pain. Saudi J Biol Sci. 2023;30(4):103624. doi:10.1016/j.sjbs.2023.103624.
  • Mathias GP, Panigrahi T, Shanbagh S, Sadhana V, P B, K R, Sethu S, Ghosh A, Pidathala C, Ghosh A, et al. Combination of aqueous extracts of phyllanthus niruri, boerhavia diffusa,and picrorhiza kurroaor zingiber officinalealone inhibit intracellular inflammatory signaling cascade. Journal of Herbal Medicine. 2020;23:100378. doi:10.1016/j.hermed.2020.100378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.