49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GLUT1 mediates bronchial epithelial E-cadherin disruption in TDI-induced steroid-insensitive asthma

, PhD, , MD, , MD, , MD, , MD, , MD, , MD, , PhD & , PhD show all
Received 19 Apr 2024, Accepted 10 Jun 2024, Published online: 24 Jun 2024

References

  • Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, Cruz AA, Duijts L, Drazen JM, FitzGerald JM, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2021;59(1):2102730. doi:10.1183/13993003.02730-2021.
  • Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 2019;28(153):190096. doi:10.1183/16000617.0096-2019.
  • Inoue H, Akimoto K, Homma T, Tanaka A, Sagara H. Airway epithelial dysfunction in asthma: relevant to epidermal growth factor receptors and airway epithelial cells. J Clin Med. 2020;9(11):3698. doi:10.3390/jcm9113698.
  • Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020;145(6):1499–1509. doi:10.1016/j.jaci.2020.04.0105.
  • Nawijn MC, Hackett TL, Postma DS, van Oosterhout AJ, Heijink IH. E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol. 2011;32(6):248–255. doi:10.1016/j.it.2011.03.004.
  • Ghosh B, Loube J, Thapa S, Ryan H, Capodanno E, Chen D, Swaby C, Chen S, Mahmud S, Girgis M, et al. Loss of E-cadherin is causal to pathologic changes in chronic lung disease. Commun Biol. 2022;5(1):1149. doi:10.1038/s42003-022-04150-w.
  • Hu QP, Kuang JY, Yang QK, Bian XW, Yu S. Beyond a tumor suppressor: soluble E-cadherin promotes the progression of cancer. Int J Cancer. 2016;138(12):2804–2812. doi:10.1002/ijc.29982.
  • Heijink IH, Kies PM, Kauffman HF, Postma DS, van Oosterhout AJ, Vellenga E. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity. J Immunol. 2007;178(12):7678–7685. doi:10.4049/jimmunol.178.12.7678.
  • Post S, Heijink IH, Hesse L, Koo HK, Shaheen F, Fouadi M, Kuchibhotla VNS, Lambrecht BN, Van Oosterhout AJM, Hackett TL, et al. Characterization of a lung epithelium specific E-cadherin knock-out model: implications for obstructive lung pathology. Sci Rep. 2018;8(1):13275. doi:10.1038/s41598-018-31500-8.
  • Goto T, Ishizaka A, Katayama M, Kohno M, Tasaka S, Fujishima S, Kobayashi K, Nomori H. Involvement of E-cadherin cleavage in reperfusion injury. Eur J Cardiothorac Surg. 2010;37(2):426–431. doi:10.1016/j.ejcts.2009.06.041.
  • Evans SM, Blyth DI, Wong T, Sanjar S, West MR. Decreased distribution of lung epithelial junction proteins after intratracheal antigen or lipopolysaccharide challenge: correlation with neutrophil influx and levels of BALF sE-cadherin. Am J Respir Cell Mol Biol. 2002;27(4):446–454. doi:10.1165/rcmb.4776.
  • Masuyama K, Morishima Y, Ishii Y, Nomura A, Sakamoto T, Kimura T, Mochizuki M, Uchida Y, Sekizawa K. Sputum E-cadherin and asthma severity. J Allergy Clin Immunol. 2003;112(1):208–209. doi:10.1067/mai.2003.1526.
  • Melis L, Van Praet L, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-α production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73(6):1223–1231. doi:10.1136/annrheumdis-2013-203881.
  • Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ngan HYS, Wong AST. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun. 2018;9(1):2270. doi:10.1038/s41467-018-04695-7.
  • Yao L, Chen S, Tang H, Huang P, Wei S, Liang Z, Chen X, Yang H, Tao A, Chen R, et al. Transient receptor potential ion channels mediate adherens junctions dysfunction in a toluene diisocyanate-induced murine asthma model. Toxicol Sci. 2019;168(1):160–170. doi:10.1093/toxsci/kfy285.
  • Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298(2):E141–5. doi:10.1152/ajpendo.00712.2009.
  • Hsueh YJ, Meir YJ, Lai JY, Huang CC, Lu TT, Ma DH, Cheng CM, Wu WC, Chen HC. Ascorbic acid ameliorates corneal endothelial dysfunction and enhances cell proliferation via the noncanonical GLUT1-ERK axis. Biomed Pharmacother. 2021;144:112306. doi:10.1016/j.biopha.2021.112306.
  • Beg M, Abdullah N, Thowfeik FS, Altorki NK, McGraw TE. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. Elife. 2017;6:e26896. doi:10.7554/eLife.26896.
  • Mo Y, Wang Y, Zhang S, Xiong F, Yan Q, Jiang X, Deng X, Wang Y, Fan C, Tang L, et al. Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol Cancer. 2021;20(1):112. doi:10.1186/s12943-021-01409-4.
  • Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. 2020;127(4):466–482. doi:10.1161/CIRCRESAHA.119.316463.
  • Renaudin F, Orliaguet L, Castelli F, Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y, Cohen-Solal M, et al. Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Ann Rheum Dis. 2020;79(11):1506–1514. doi:10.1136/annrheumdis-2020-217342.
  • Tang H, Guo Y, Gan S, Chen Z, Dong M, Lin L, Chen H, Ji X, Xian M, Shi X, et al. GLUT1 mediates the release of HMGB1 from airway epithelial cells in mixed granulocytic asthma. Biochim Biophys Acta Mol Basis Dis. 2024;1870(3):167040. doi:10.1016/j.bbadis.2024.167040.
  • Zheng PP, Romme E, van der Spek PJ, Dirven CM, Willemsen R, Kros JM. Glut1/SLC2A1 is crucial for the development of the blood-brain barrier in vivo. Ann Neurol. 2010;68(6):835–844. doi:10.1002/ana.22318.
  • Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–530. doi:10.1038/nn.3966.
  • Tang H, Chen Z, Gan S, Liang Y, Zhang H, Yang C, Lin L, Guo Y, Li S, Li J, et al. GLUT1 contributes to impaired epithelial tight junction in the late phase of acute lung injury. Eur J Pharmacol. 2023;961:176185. doi:10.1016/j.ejphar.2023.176185.
  • Chen R, Zhang Q, Chen S, Tang H, Huang P, Wei S, Liang Z, Chen X, Tao A, Yao L. IL-17F, rather than IL-17A, underlies airway inflammation in a steroid-insensitive toluene diisocyanate-induced asthma model. Eur Respir J. 2019;53(4):1801510. doi:10.1183/13993003.01510-2018.
  • Tarlo SM, Lemiere C. Occupational asthma. N Engl J Med. 2014;370(7):640–649. doi:10.1056/NEJMra1301758.
  • Johnson VJ, Yucesoy B, Luster MI. Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol. 2005;116(4):851–858. doi:10.1016/j.jaci.2005.07.008.
  • Devos FC, Pollaris L, Cremer J, Seys S, Hoshino T, Ceuppens J, Talavera K, Nemery B, Hoet PHM, Vanoirbeek JAJ. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice. PLoS One. 2017;12(7):e0180690. doi:10.1371/journal.pone.0180690.
  • De Vooght V, Vanoirbeek JA, Haenen S, Verbeken E, Nemery B, Hoet PH. Oropharyngeal aspiration: an alternative route for challenging in a mouse model of chemical-induced asthma. Toxicology. 2009;259(1-2):84–89. doi:10.1016/j.tox.2009.02.007.
  • Malo JL, Cartier A, Côté J, Milot J, Leblanc C, Paquette L, Ghezzo H, Boulet LP. Influence of inhaled steroids on recovery from occupational asthma after cessation of exposure: an 18-month double-blind crossover study. Am J Respir Crit Care Med. 1996;153(3):953–960. doi:10.1164/ajrccm.153.3.8630579.
  • Pelikan Z. Delayed asthmatic response: a new phenotype of bronchial response to allergen challenge and soluble adhesion molecules in the serum. Ann Allergy Asthma Immunol. 2011;106(2):119–130. doi:10.1016/j.anai.2010.11.002.
  • Zezina E, Sercan-Alp O, Herrmann M, Biesemann N. Glucose transporter 1 in rheumatoid arthritis and autoimmunity. Wiley Interdiscip Rev Syst Biol Med. 2020;12(4):e1483. doi:10.1002/wsbm.1483.
  • Deng D, Yan N. GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 2016;25(3):546–558. doi:10.1002/pro.2858.
  • Molina SA, Moriarty HK, Infield DT, Imhoff BR, Vance RJ, Kim AH, Hansen JM, Hunt WR, Koval M, McCarty NA. Insulin signaling via the PI3-kinase/Akt pathway regulates airway glucose uptake and barrier function in a CFTR-dependent manner. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L688–L702. doi:10.1152/ajplung.00364.2016.
  • Liang Y, Zhang H, Li H, Wang X, Xie J, Li Y, Li J, Qian Y, Zhang H, Wang T, et al. GLUT1 regulates the release of VEGF-A in the alveolar epithelium of lipopolysaccharide-induced acute lung injury. Cell Biol Int. 2024;48(4):510–520. doi:10.1002/cbin.12127.
  • Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. J Biol Chem. 2016; 291(52):26762–26772. doi:10.1074/jbc.M116.759175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.