449
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Reversible Photocontrol of Wood-Surface Wettability Between Superhydrophilicity and Superhydrophobicity Based on a TiO2 Film

, , , &

REFERENCES

  • Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K.W. Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 2001, 61(9), 1189–1224.
  • Evans, P.D. A note on assessing the deterioration of thin wood veneers during weathering. Wood Fiber Sci. 1988, 20(4), 487–492.
  • Jebrane, M.; Sebe, G.; Cullis, I.; Evans, P.D. Photostabilization of wood using aromatic vinyl esters. Polym. Deg. Stab. 2009, 94(2), 151–157.
  • Hameury, S. Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: A numerical study. Build. Environ. 2005, 40(10), 1400–1412.
  • Ahmed, S.A.; Yang, Q.; Sehlstedt-Persson, M.; Morén, T. Accelerated mold test on dried pine sapwood boards: Impact of contact heat treatment. J. Wood Chem. Technol. 2013, 33(3), 174–187.
  • Hazarika, A.; Maji, T.K. Study on the properties of wood polymer nanocomposites based on melamine formaldehyde-furfuryl alcohol copolymer and modified clay. J. Wood Chem. Technol. 2013, 33(2), 103–124.
  • Evans, P.D.; Urban, K.; Chowdhury, M.J.A. Surface checking of wood is increased by photodegradation caused by ultraviolet and visible light. Wood Sci. Technol. 2008, 42(3), 251–265.
  • Li, J.; Yu, H.; Sun, Q.; Liu, Y.; Cui, Y.; Lu, Y. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl. Surf. Sci. 2010, 256(16), 5046–5050.
  • Jin, C.; Li, J.; Wang, J.; Han, S.; Wang, Z.; Sun, Q. Cross-linked ZnO nanowalls immobilized onto bamboo surface and their use as recyclable photocatalysts. J. Nanomater. 2014.
  • Lu, Y.; Xiao, S.; Gao, R.; Li, J.; Sun, Q. Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung 2014, 68(3), 345–351.
  • Saka, S.; Ueno, T. Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci. Technol. 1997, 31(6), 457–466.
  • Miyafuji, H.; Saka, S. Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci. Technol. 1997, 31(6
  • Vlad Cristea, M.; Riedl, B.; Blanchet, P. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog. Org. Coat. 2010, 69(4), 432–441.
  • Tshabalala, M.A.; Sung, L.P. Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films. J. Coat. Technol. Res. 2007, 4(4), 483–490.
  • Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15(35–36), 3559–3592.
  • Yao, X.; Song, Y.; Jiang, L. Applications of bio-inspired special wettable surfaces. Adv. Mater. 2011, 23(6), 719–734.
  • Harnett, E.M.; Alderman, J.; Wood, T. The surface energy of various biomaterials coated with adhesion molecules used in cell culture. Colloid. Surface. B 2007, 55(1), 90–97.
  • Li, S.; Zhang, S.; Wang, X. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 2008, 24(10), 5585–5590.
  • Sun, R.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 2001, 105(10), 1984–1990.
  • Liu, H.; Feng, L.; Zhai, J.; Jiang, L.; Zhu, D. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 2004, 20(14), 5659–5661.
  • Feng, X.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18(23), 3063–3078.
  • Gao, X.; Jiang, L. Biophysics: Water-repellent legs of water striders. Nature 2004, 432(7013), 36–36.
  • Feng, X.; Zhai, J.; Jiang, L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew. Chem. Int. Edit. 2005, 44(32), 5115–5118.
  • Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Edit. 2008, 47(9), 1766–1769.
  • Linsebigler, A.L.; Lu, G.; Yates Jr., J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95(3), 735–758.
  • Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107(41), 2891–2959.
  • Wang, S.; Song, Y.; Jiang, L. Photoresponsive surfaces with controllable wettability. J. Photoch. Photobio. C 2007, 8(1
  • Wang, R.; Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phy. Chem. B 1999, 103(12), 2188–2194.
  • Miyauchi, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Photoinduced surface reactions on TiO2 and SrTiO3 films: Photocatalytic oxidation and photoinduced hydrophilicity. Chem. Mater. 2000, 12(1), 3–5.
  • Stevens, N.; Priest, C.I.; Sedev, R.; Ralston, J. Wettability of photoresponsive titanium dioxide surfaces. Langmuir 2003, 19(8), 3272–3275.
  • Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388(664), 431–432.
  • Sun, Q.; Lu, Y.; Liu, Y. Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J. Mater. Sci. 2011, 46(24), 7706–7712.
  • Hsieh, C.-T.; Chang, B.-S.; Lin, J.-Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Appl. Surf. Sci. 2011, 257(18), 7997–8002.
  • Hameury, S.; Lundström, T. Contribution of indoor exposed massive wood to a good indoor climate: In situ measurement campaign. Energ. Buildings 2004, 36 (3), 281–292.
  • Wang, X.; Liu, J.; Chai, Y. Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. BioResources 2012, 7(1), 0893–0901.
  • Veronovski, N.; Verhovšek, D.; Godnjavec, J. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Sci. Technol. 2013, 47(2), 317–328.
  • Andersson, S.; Serimaa, R.; Paakkari, T.; Saranpää, P.; Pesonen, E. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 2003, 49(6), 531–537.
  • Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115(15), 7355–7363.
  • Kiwi, J.; Nadtochenko, V. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 2005, 21(0743–7463), 4631–4641.
  • Wang, Y.; Wang, W.; Zhong, L.; Wang, J.; Jiang, Q.; Guo, X. Super-hydrophobic surface on pure magnesium substrate by wet chemical method. Appl. Surf. Sci. 2010, 256(12), 3837–3840.
  • Jeong, H.-J.; Kim, D.-K.; Lee, S.-B.; Kwon, S.-H.; Kadono, K. Preparation of water-repellent glass by sol–gel process using perfluoroalkylsilane and tetraethoxysilane. J. Colloid. Interf. Sci. 2001, 235(1), 130–134.
  • Caputo, G.; Nobile, C.; Kipp, T.; Blasi, L.; Grillo, V.; Carlino, E.; Manna, L.; Cingolani, R.; Cozzoli, P.D.; Athanassiou, A. Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation. J. Phys. Chem. C 2008, 112(3),701–714.
  • Nosaka, A.Y.; Kojima, E.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y. Photoinduced changes of adsorbed water on a TiO2 photocatalytic film as studied by 1H NMR spectroscopy. J. Phys. Chem. B 2003, 107 (44), 12042–12044.
  • Ketteler, G.; Yamamoto, S.; Bluhm, H.; Andersson, K.; Starr, D.E.; Ogletree, D.F.; Ogasawara, H.; Nilsson, A.; Salmeron, M. The nature of water nucleation sites on TiO2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 2007, 111, 8278–8282.
  • Risse, G.; Matys, S.; Böttcher, H. Investigation into the photo-induced change in wettability of hydrophobized TiO2 films. Appl. Surf. Sci. 2008, 254(18), 5994–6001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.