179
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Modification of Poplar Wood Using Polyhexahydrotriazine and Its Effect on Hygroscopicity

, , &
Pages 214-223 | Received 03 Mar 2017, Accepted 10 Jan 2018, Published online: 29 May 2018

REFERENCES

  • Brelid, P. L.; Simonson, R.; Bergman, Ö.; and Nilsson, T. Resistance of Acetylated Wood to Biological Degradation. Holz Roh Werkst. 2000, 58(5), 331–337. DOI:10.1007/s001070050439.
  • Hill, C. A. S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons, Hoboken, New Jersey, 2006.
  • Chai, Y. B.; Liu, J. L.; Zhen, X. Dimensional Stability, Mechanical Properties and Fire Resistance of MUF-Boron Treated Wood. Adv. Mater. Res. 2012, 341, 80–84.
  • Prakash, G. K.; Mahadevan, K. M. Enhancing the Properties of Wood through Chemical Modification with Palmitoyl Chloride. Appl. Surf. Sci. 2008, 254(6), 1751–1756. DOI:10.1016/j.apsusc.2007.07.137.
  • Devi, R. R.; Ali, I.; Maji, T. K. Chemical Modification of Rubber Wood with Styrene in Combination with a Crosslinker: Effect on Dimensional Stability and Strength Property. Bioresour. Technol. 2003, 88(3), 185–188. DOI:10.1016/S0960-8524(03)00003-8.
  • Chang, H. T.; Chang, S. T. Moisture Excluding Efficiency and Dimensional Stability of Wood Improved by Acylation. Bioresour. Technol. 2002, 85(2), 201–204. DOI:10.1016/S0960-8524(02)00085-8.
  • Hazer, B.; Örs, Y.; Alma, M. H. Improvement of Wood Properties by Impregnation with Macromonomeric Initiators (Macroinimers). J. Appl. Polym. Sci. 1993, 47(6), 1097–1103. DOI:10.1002/app.1993.070470617.
  • Rozman, H. D.; Kumar, R. N.; Abdulkhalil, H. P. S.; Abusamah, A.; Abu, R. Chemical Modification of Wood with Maleic Anhydride and Subsequent Copolymerization with Diallyl Phthalate. J. Wood Chem. Technol. 1997, 17(4), 419–433. DOI:10.1080/02773819708003142.
  • Srinivas, K.; Pandey, K. K. Effect of Heat Treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32(4), 304–316.DOI:10.1080/02773813.2012.674170.
  • Salla, J.; Pandey, K. K.; Prakash, G. K.; Mahadevan, K. M. Photobleaching and Dimensional Stability of Rubber Wood Esterified by Fatty acid Chlorides. J. Wood Chem. Technol. 2012, 32(2), 121–136. DOI:10.1080/02773813.2011.624665.
  • Moghaddam, M. S.; Wålinder, M. E. P.; Claesson, P. M., Swerin, A. Wettability and Swelling of Acetylated and Furfurylated Wood Analyzed by Multicycle Wilhelmy Plate Method. Holzforschung 2016, 70(1), 69–77.
  • Goldstein, I. S.; Weaver, J. W. Process of Acetylating Wood. US, US3094431, 1963.
  • Rowell, R. M.; Simonson, R.; Tillman, A. M. Acetyl Balance for the Acetylation of Wood Particles by a Simplified Procedure. Holzforschung 1990, 44(4), 263–270. DOI:10.1515/hfsg.1990.44.4.263.
  • Goldstein, I. S.; Jeroski, E. B.; Lund, A. E.; Nielson, J. F.; Weaver, J. W. Acetylation of Wood in Lumber Thickness; University of Nairobi: Nairobi, Kenya, 1961.
  • García, J. M.; Jones, G. O.; Virwani, K.; Mccloskey, B. D.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines, Science 2014, 344(6185), 732–735. DOI:10.1126/science.1251484.
  • Li, X.; Li, Y.; Zhong, Z.; Wang, D.; Ratto, J. A.; Sheng, K.; Sun, X. S. Mechanical and Water Soaking Properties of Medium Density Fiberboard with Wood Fiber and Soybean Protein Adhesive. Bioresour. Technol. 2009, 100(14), 3556–3562. DOI:10.1016/j.biortech.2009.02.048.
  • Mattos, B. D.; Lourençon, T. V.; Serrano, L., Labidi, J.; Gatto, D. A. Chemical modification of fast-growing eucalyptus wood. Wood Sci. Technol. 2015, 49(2), 273–288. DOI:10.1007/s00226-014-0690-8.
  • Islam, M. S.; Hamdan, S.; Rusop, M.; Rahman, M. R.; Saleh, A., Idrus, M. A. M. M. Dimensional Stability and Water Repellent Efficiency Measurement of Chemically Modified Tropical Light Hardwood. BioResources 2012, 7(1), 1221–1231.
  • Hill, C. A. S.; Jones, D. Dimensional Changes in Corsican Pine Sapwood due to Chemical Modification with Linear Chain Anhydrides. Holzforschung 1999, 53(3), 267–271. DOI:10.1515/HF.1999.045.
  • Lukowsky, D. Influence of the Formaldehyde Content of Waterbased Melamine Formaldehyde Resins on Physical Properties of Scots Pine Impregnated Therewith. Holz Roh Werkst. 2002, 60(5), 349–355. DOI:10.1007/s00107-002-0324-y.
  • Xie, Y.; Fu, Q.; Wang, Q.; Xiao, Z.; Militz, H. Effects of Chemical Modification on the Mechanical Properties of Wood. Eur. J. Wood Wood Prod. 2013, 71(4), 401–416. DOI:10.1007/s00107-013-0693-4.
  • Furuno, T.; Imamura, Y.; Kajita, H. The Modification of Wood by Treatment with Low Molecular Weight Phenol-Formaldehyde Resin: A Properties Enhancement with Neutralized Phenolic-Resin and Resin Penetration into Wood Cell Walls. Wood Sci. Technol. 2004, 37(5), 349–361. DOI:10.1007/s00226-003-0176-6.
  • Merela, M.; Oven, P.; Serša, I.; Mikac, U. A Single Point NMR Method for an Instantaneous Determination of the Moisture Content of Wood. Holzforschung 2009, 63(3), 348–351. DOI:10.1515/HF.2009.050.
  • Zhang, M.; Wang, X.; Gazo, R. Water States in Yellow Poplar During Drying Studied by Time-Domain Nuclear Magnetic Resonance. Wood Fiber Sci. 2013, 45(4), 423–428.
  • Xu, Y.; Araujo, C. D.; Mackay, A. L.; Whittall, K. P. Proton Spin–Lattice Relaxation in Wood—T1 Related to Local Specific Gravity Using a Fast-Exchange Model. J. Magn. Reson., Ser. B 1996, 110(1), 55–64. DOI:10.1006/jmrb.1996.0007.
  • Provencher, S. W. CONTIN: A General Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral Equations. Comput. Phys. Commun. 1982, 27(3), 229–242. DOI:10.1016/0010-4655(82)90174-6.
  • Lamason, C.; Macmillan, B.; Balcom, B.; Leblon, B.; Pirouz, Z. Examination of Water Phase Transitions in Black Spruce by Magnetic Resonance and Magnetic Resonance Imaging. Pol. J. Radiol. 2014, 80(1), 93–106.
  • Almeida, G.; Gagné, S.; Hernández, R. E. A NMR Study of Water Distribution in Hardwoods at Several Equilibrium Moisture Contents. Wood Sci. Technol. 2007, 41(4), 293–307. DOI:10.1007/s00226-006-0116-3.
  • Cai, X.; Riedl, B.; Zhang, S. Y.; Wan, H. Effects of Nanofillers on Water Resistance and Dimensional Stability of Solid Wood Modified by Melamine-Urea-Formaldehyde Resin. Wood Fiber Sci. 2007, 39(2), 307–318.
  • Wang, W. L.; Ren, X. Y.; Che, Y. Z.; Chang, J. M.; Gou, J. S. Kinetics and FTIR Characteristics of the Pyrolysis Process of Poplar Wood. For. Sci. Pract. 2013,15(1), 70–75.
  • Esmaeili, N.; Zohuriaanmehr, M. J.; Mohajeri, S.; Kabiri, K.; Bouhendi, H. Hydroxymethyl Furfural-Modified Urea–Formaldehyde Resin: Synthesis and Properties. Eur. J. Wood Wood Prod. 2016, 75(1), 71–80. DOI:10.1007/s00107-016-1072-8.
  • Bui, N. Q.; Fongarland, P.; Rataboul, F.; Dartiguelongue, C.; Charon, N.; Vallée, C.; Essayem, N. FTIR as a Simple Tool to Quantify Unconverted Lignin from Chars in Biomass Liquefaction Process: Application to SC Ethanol Liquefaction of Pine Wood. Fuel Process. Technol. 2015, 134, 378–386. DOI:10.1016/j.fuproc.2015.02.020.
  • Kandelbauer, A.; Despres, A.; Pizzi, A.; Taudes, I. Testing by Fourier Transform Infrared Species Variation During Melamine–Urea–Formaldehyde Resin Preparation. J. Appl. Polym. Sci. 2007, 106(4), 2192–2197. DOI:10.1002/app.26757.
  • Cesar, T.; Danevčič, T.; Kavkler, K.; Stopar, D. Melamine Polymerization in Organic Solutions and Waterlogged Archaeological Wood Studied by FTIR Spectroscopy. J. Cultural Heritage 2016, 23, 106–110.DOI:10.1016/j.culher.2016.09.009.
  • Tjeerdsma, B. F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement. Holz Roh Werkst. 1998, 56(3), 149–153. DOI:10.1007/s001070050287.
  • Agarwal, U. P.; McSweeny, J. D.; Ralph, S. A. FT–Raman Investigation of Milled-Wood Lignins: Softwood, Hardwood, and Chemically Modified Black Spruce Lignins. J. Wood Chem. Technol. 2011, 31(4), 324–344. DOI:10.1080/02773813.2011.562338.
  • Giridhar, N.; Pandey, K. K.; Prasad, B. E.; Bisht, S. S.; Vagdevi, H. M. Dimensional Stabilization of Wood by Chemical Modification Using Isopropenyl Acetate. Maderas. Ciencia y Tecnología 2017, 19, 15–20.
  • Ke, J., Singh, D.; Chen, S. Metabolism of Polycyclic Aromatic Hydrocarbons by the Wood-Feeding Termite Coptotermes Formosanus (Shiraki). J. Agric. Food Chem. 2012, 60(7), 1788–1797. DOI:10.1021/jf204707d.
  • Agarwal, U. P.; Ralph, S. A.; Baez, C.; Reiner, R. S.; Verrill, S. P. Effect of Sample Moisture Content on XRD-Estimated Cellulose Crystallinity Index and Crystallite Size. Cellulose 2017, 24(5), 1971–1984. DOI:10.1007/s10570-017-1259-0.
  • Awa, K.; Shinzawa, H.; Ozaki, Y. An Effect of Cellulose Crystallinity on the Moisture Absorbability of a Pharmaceutical Tablet Studied by Near-Infrared Spectroscopy. Appl. Spectrosc. 2014, 68(6), 625–632. DOI:10.1366/13-07273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.