220
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Application of Micro-FTIR Spectroscopy to Study Molecular Structure of Desorbed Water in Heat-Treated Wood During Moisture Desorption Process

, ORCID Icon, , &

REFERENCES

  • Wang, S. Y.; Wang, H. L. Effects of Moisture Content and Specific Gravity on Static Bending Properties and Hardness of Six Wood Species. J. Wood Sci. 1999, 45, 127–133. DOI: 10.1007/BF01192329.
  • Zhang, X.; Künzel, H. M.; Zillig, W.; Mitterer, C.; Zhang, X. A Fickian Model for Temperature-Dependent Sorption Hysteresis in Hygrothermal Modeling of Wood Materials. Int. J. Heat Mass Transf. 2016, 100, 58–64. DOI: 10.1016/j.ijheatmasstransfer.2016.04.057.
  • Gauvin, C.; Jullien, D.; Doumalin, P.; Dupré, J. C.; Gril, J. Image Correlation to Evaluate the Influence of Hygrothermal Loading on Wood. Strain. 2014, 50, 428–435. DOI: 10.1111/str.12090.
  • Borrega, M.; Kärenlampi, P. P. Mechanical Behavior of Heat-Treated Spruce (Picea Abies) Wood at Constant Moisture Content and Ambient Humidity. Holz Roh. Werkst. 2008, 66, 63–69. DOI: 10.1007/s00107-007-0207-3.
  • Molinski, W.; Raczkowski, J. Mechanical Stresses Generated by Water Adsorption in Wood and Their Determination by Tension Creep Measurements. Wood Scitechnol. 1988, 22, 193–198. DOI: 10.1007/BF00386013.
  • Ates, S.; Akyildiz, M. H.; Ozdemir, H. Effects of Heat Treatment on Calabrian Pine (Pinus Brutia Ten.). Wood. BioResource. 2009, 4, 1032–1043. DOI: 10.1007/s00226-008-0200-y.
  • Korkut, S.; Hiziroglu, S. Effect of Heat Treatment on Mechanical Properties of Hazelnut Wood (Corylus Colurna L.). Mater. Design. 2009, 30, 1853–1858. DOI: 10.1016/j.matdes.2008.07.009.
  • Srinivas, K.; Pandey, K. K. Effect of Heat Treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32, 304–316. DOI: 10.1080/02773813.2012.674170.
  • Missio, A. L.; Mattos, B. D.; Cademartori, P. H. G. D.; Gatto, D. A. Effects of Two-Step Freezing-Heat Treatments on Japanese Raisintree (Hovenia Dulcis Thunb.) Wood Properties. J. Wood Chem. Technol. 2016, 36, 16–26. DOI: 10.1080/02773813.2015.1039544.
  • Ozyhar, T.; Hering, S.; Sanabria, S. J.; Niemz, P. Determining Moisture-dependent elastic characteristics of Beech Wood by Means of Ultrasonic Waves. Wood Sci. Technol. 2013, 47, 329–341. DOI: 10.1007/s00226-012-0499-2.
  • Maeda, H.; Fukada, E. Effect of Bound Water on Piezoelectric, Dielectric, and Elastic Properties of Wood. J. Appl. Polym. Sci. 1987, 33, 1187–1198. DOI: 10.1002/app.1987.070330411.
  • Hogan, C. J.; Niklas, K. J. Temperature and Water Content Effects on the Viscoelastic Behavior of Tilia Americana (Tiliaceae) Sapwood. Trees. 2004, 18, 339–345. DOI: 10.1007/s00468-003-0311-x.
  • Khan, M. A.; Ali, K. M. I.; Wang, W. Electrical Properties and X-Ray Diffraction of Wood and Wood Plastic Composite (WPC). Radiat. Phys. Chem. 1991, 38, 303–306. DOI: 10.1016/1359-0197(91)90097-L.
  • Gündüz, G.; Niemz, P.; Aydemir, D. Changes in Specific Gravity and Equilibrium Moisture Content in Heat-Treated Fir (Abies Nordmanniana Subsp. bornmülleriana Mattf.) Wood. Dry. Technol. 2008, 26, 1135–1139. DOI: 10.1080/07373930802266207.
  • Borrega, M.; Kärenlampi, P. P. Hygroscopicity of Heat-Treated Norway Spruce (Picea Abies) Wood. Eur. J. Wood Prod. 2010, 68, 233–235. DOI: 10.1007/s00107-009-0371-8.
  • Scheiding, W.; Direske, M.; Zauer, M. Water Absorption of Untreated and Thermally Modified Sapwood and Heartwood of Pinus Sylvestris L. Eur. J. Wood Prod. 2016, 74, 585–589. DOI: 10.1007/s00107-016-1044-z.
  • Garcia, R. A.; de Carvalho, A. M.; de Figueiredo Latorraca, J. V.; de Matos, J. L. M.; Santos, W. A.; de Medeiros Silva, R. F. M. Nondestructive Evaluation of Heat-Treated Eucalyptus Grandis Hill Ex Maiden Wood Using Stress Wave Method. Wood Sci. Technol. 2012, 46, 41–52. DOI: 10.1007/s00226-010-0387-6.
  • Bakar, B. F. A.; Hiziroglu, S.; Tahir, P. M. Properties of Some Thermally Modified Wood Species. Mater. Design. 2013, 43, 348–355. DOI: 10.1016/j.matdes.2012.06.054.
  • Willems, W.; Altgen, M.; Militz, H. Comparison of EMC and Durability of Heat Treated Wood from High versus Low Water Vapour Pressure Reactor Systems. Int. Wood Products J. 2015, 6, 21–26. DOI: 10.1179/2042645314Y.0000000083.
  • Metsä-Kortelainen, S.; Viitanen, H. Wettability of Sapwood and Heartwood of Thermally Modified Norway Spruce and Scots Pine. Eur. J. Wood Prod. 2012, 70, 135–139. DOI: 10.1007/s00107-011-0523-5.
  • Wang, S.; Mahlberg, R.; Jämsä, S.; Nikkola, J.; Mannila, J.; Ritschkoff, A. C.; Peltonen, J. Surface Properties and Moisture Behaviour of Pine and Heat-Treated Spruce Modified with Alkoxysilanes by Sol-Gel Process. Progr. Org. Coat. 2011, 71, 274–282. DOI: 10.1016/j.porgcoat.2011.03.011.
  • Priadi, T.; Hiziroglu, S. Characterization of Heat Treated Wood Species. Mater. Design. 2013, 49, 575–582. DOI: 10.1016/j.matdes.2012.12.067.
  • Salca, E. A.; Hiziroglu, S. Evaluation of Hardness and Surface Quality of Different Wood Species as Function of Heat Treatment. Mater. Design. 2014, 62, 416–423. DOI: 10.1016/j.matdes.2014.05.029.
  • Dilik, T.; Hiziroglu, S. Bonding Strength of Heat Treated Compressed Eastern Redcedar Wood. Mater. Design. 2012, 42, 317–320. DOI: 10.1016/j.matdes.2012.05.050.
  • Ahmed, S. A.; Yang, Q.; Sehlstedt-Persson, M.; Morén, T. Accelerated Mold Test on Dried Pine Sapwood Boards: Impact of Contact Heat Treatment. J. Wood Chem. Technol. 2013, 33, 174–187. DOI: 10.1080/02773813.2013.773041.
  • Kartal, S. N.; Hwang, W. J.; Imamura, Y. Water Absorption of Boron-Treated and Heat-Modified Wood. J. Wood Sci. 2007, 53, 454–457. DOI: 10.1007/s10086-007-0877-9.
  • Metsä-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. The Water Absorption of Sapwood and Heartwood of Scots Pine and Norway Spruce Heat-Treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Roh. Werkst. 2006, 64, 192–197. DOI: 10.1007/s00107-005-0063-y.
  • Hill, C. A. S.; Ramsay, J.; Keating, B.; Laine, K.; Rautkari, L.; Hughes, M.; Constant, B. The Water Vapour Sorption Properties of Thermally Modified and Densified Wood. J. Mater. Sci. 2012, 47, 3191–3197. DOI: 10.1007/s10853-011-6154-8.
  • Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. Changes in Wettability of Heat-Treated Wood Due to Artificial Weathering. Wood Sci. Technol. 2012, 46, 1215–1237. DOI: 10.1007/s00226-012-0479-6.
  • Araujo, C. D.; MacKay, A. L.; Hailey, J. R. T.; Whittall, K. P.; Le, H. Proton Magnetic Resonance Techniques for Characterization of Water in Wood: Application to White Spruce. Wood Scitechnol. 1992, 26, 101–113. DOI: 10.1007/BF00194466.
  • Gezici-Koç, Ö.; Erich, S. J. F.; Huinink, H. P.; Ven, L. G. J. V.; Adan, O. C. G. Bound and Free Water Distribution in Wood during Water Uptake and Drying as Measured by 1D Magnetic Resonance Imaging. Cellulose. 2016, 24, 1–19. DOI: 10.1007/s10570-016-1173-x.
  • Lestander, T. A. Water Absorption Thermodynamics in Single Wood Pellets Modelled by Multivariate near-Infrared Spectroscopy. Holzforschung. 2008, 62, 429–434. DOI: 10.1515/HF.2008.071.
  • Inagaki, T.; Yonenobu, H.; Tsuchikawa, S. Near-Infrared Spectroscopic Monitoring of the Water Adsorption/Desorption Process in Modern and Archaeological Wood. Appl. Spectrosc. 2008, 62, 860–865. DOI: 10.1366/000370208785284312.
  • Mora, C.; Schimleck, L.; Yoon, S. C.; Thai, C. Determination of Basic Density and Moisture Content of Loblolly Pine Wood Disks Using a near Infrared Hyperspectral Imaging System. J. Near Infra. Spectrosc. 2011, 19, 401–409. DOI: 10.1255/jnirs.948.
  • Ferraz, A.; Mendonca, R.; Guerra, A.; Ruiz, J.; Rodríguez, J.; Baeza, J.; Freer, J. Near-Infrared Spectra and Chemical Characteristics of Pinus Taeda (Loblolly Pine) Wood Chips Biotreated by the White-Rot Fungus Ceriporiopsis Subvermispora. J. Wood Chem. Technol. 2005, 24, 99–113. DOI: 10.1081/WCT-200026557.
  • Bardet, M.; Foray, M. F.; Maron, S.; Goncalves, P.; Trân, Q. K. Characterization of Wood Components of Portuguese Medieval Dugout Canoes with High-Resolution Solid-State NMR. Carbohyd. Polym. 2004, 57, 419–424. DOI: 10.1016/j.carbpol.2004.05.012.
  • Hsi, E.; Hossfeld, R.; Bryant, R. G. Nuclear Magnetic Resonance Relaxation Study of Water Absorbed on Milled Northern White-Cedar. J. Colloid Interface Sci. 1977, 62, 389–395. DOI: 10.1016/0021-9797(77)90090-X.
  • Kekkonen, P. M.; Ylisassi, A.; Telkki, V. Absorption of Water in Thermally Modified Pine Wood as Studied by Nuclear Magnetic Resonance. J. Phys. Chem. C. 2014, 118, 2146–2153. DOI: 10.1021/jp411199r.
  • Casieri, C.; Senni, L.; Romagnoli, M.; Santamaria, U.; Luca, F. D. Determination of Moisture Fraction in Wood by Mobile NMR Device. J. Magn. Reson. 2004, 171, 364–372. DOI: 10.1016/j.jmr.2004.09.014.
  • Hakkou, M.; Pétrissans, M.; Zoulalian, A.; Gérardin, P. Investigation of Wood Wettability Changes during Heat Treatment on the Basis of Chemical Analysis. Polym. Degrad. Stabil. 2005, 89, 1–5. DOI: 10.1016/j.polymdegradstab.2004.10.017.
  • Ding, T.; Wang, C.; Peng, W. A Theoretical Study of Moisture Sorption Behavior of Heat-Treated Pine Wood Using Raman Spectroscopic Analysis. J. Forest. Eng. 2016, 1, 15–19.
  • Atalla, R. H. Raman Spectroscopy and the Raman Microprobe: Valuable New Tools for Characterizing Wood and Wood Pulp Fibers. J. Wood Chem. Technol. 1987, 7, 115–131. DOI: 10.1080/02773818708085256.
  • Berthold, J.; Olsson, R. J. O.; Salmén, L. Water Sorption to Hydroxyl and Carboxylic Acid Groups in Carboxymethylcellulose (CMC) Studied with NIR-Spectroscopy. Cellulose. 1998, 5, 281–298. DOI: 10.1023/a:1009298907734.
  • Tsuchikawa, S.; Siesler, H. W. Near-Infrared Spectroscopic Monitoring of the Diffusion Process of Deuterium-Labeled Molecules in Wood. Part I: Softwood. Appl. Spectrosc. 2003, 57, 667–674. DOI: 10.1366/000370203322005373.
  • Zhang, M. H.; Wang, X. M.; R. Water, G. States in Yellow Poplar during Drying Studied by Time-Domain Nuclear Magnetic Resonance. Wood. Fiber Sci. 2013, 45, 423–428.
  • Agarwal, U. P.; Kawai, N. Self-Absorption” Phenomenon in near-Infrared Fourier Transform Raman Spectroscopy of Cellulosic and Lignocellulosic Materials. Appl. Spectrosc. 2005, 59, 385–388. DOI: 10.1366/0003702053585327.
  • Olsson, A. M.; Salmén, L. The Association of Water to Cellulose and Hemicellulose in Paper Examined by FTIR Spectroscopy. Carbohyd. Res. 2004, 339, 813–818. DOI: 10.1016/j.carres.2004.01.005.
  • Célino, A.; Goncalves, O.; Jacquemin, F.; Fréour, S. Qualitative and Quantitative Assessment of Water Sorption in Natural Fibres Using ATR-FTIR Spectroscopy. Carbohyd. Polym. 2014, 101, 163–170. DOI: 10.1016/j.carbpol.2013.09.023.
  • Capron, I.; Robert, P.; Colonna, P.; Brogly, M.; Planchot, V. Starch in Rubbery and Glassy States by FTIR Spectroscopy. Carbohyd. Polym. 2007, 68, 249–259. DOI: 10.1016/j.carbpol.2006.12.015.
  • Abidi, N.; Cabrales, L.; Haigler, C. H. Changes in the Cell Wall and Cellulose Content of Developing Cotton Fibers Investigated by FTIR Spectroscopy. Carbohyd. Polym. 2014, 100, 9–16. DOI: 10.1016/j.carbpol.2013.01.074.
  • Ping, Z. H.; Nguyen, Q. T.; Chen, S. M.; Zhou, J. Q.; Ding, Y. D. States of Water in Different Hydrophilic polymers-DSC and FTIR Studies. Polymer. 2001, 42, 8461–8467. DOI: 10.1016/S0032-3861(01)00358-5.
  • Moreira, J. L.; Santos, L. Spectroscopic Interferences in Fourier Transform Infrared Wine Analysis. Anal. Chim. Acta. 2004, 513, 263–268. DOI: 10.1016/S0003-2670(03)01249-2.
  • Igisu, M.; Takai, K.; Ueno, Y.; Nishizawa, M.; Nunoura, T.; Hirai, M.; Kaneko, M.; Naraoka, H.; Shimojima, M.; Hori, K.; et al. Domain-Level Identification and Quantification of Relative Prokaryotic Cell Abundance in Microbial Communities by Micro-FTIR Spectroscopy. Environ. Microbiol. Rep. 2012, 4, 42–49. DOI: 10.1111/j.1758-2229.2011.00277.x.
  • Guo, X.; Wu, Y.; Yan, N. In Situ micro-FTIR Observation of Molecular Association of Adsorbed Water with Heat-Treated Wood. Wood Sci. Technol. 2018, 52, 971–985. DOI: 10.1007/s00226-018-1020-3.
  • Guo, X.; Qing, Y.; Wu, Y.; Wu, Q. Molecular Association of Adsorbed Water with Lignocellulosic Materials Examined by Micro-FTIR Spectroscopy. Int. J. Biol. Macromol. 2016, 83, 117–125. DOI: 10.1016/j.ijbiomac.2015.11.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.