94
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Tween 80 enhancing cellulase recyclability during activation of dissolving pulp

, , , , , , & show all

References

  • Andrade, M. F.; Colodette, J. L. Dissolving Pulp Production from Sugar Cane Bagasse. Industr. Crops Prod. 2014, 52, 58–64. DOI: 10.1016/j.indcrop.2013.09.041.
  • He, L.; Chai, X. S. Rapid Determination of the Reactivity of Dissolving Pulps by Reaction-Based Headspace Gas Chromatography. Industr. Crops Prod. 2016, 94, 540–543. DOI: 10.1016/j.indcrop.2016.09.032.
  • Jahan, M. S.; Rahman, M. M.; Sarkar, M. Upgrading Old Corrugated Cardboard (OCC) to Dissolving Pulp. Cellulose 2016, 23, 2039–2047. DOI: 10.1007/s10570-016-0894-1.
  • Yuan, Z. Y.; Wen, Y. B.; Kapu, N. S.; Beatson, R.; Martinez, D. M. A Biorefinery Scheme to Fractionate Bamboo into High-Grade Dissolving Pulp and Ethanol. Biotechnol. Biofuels 2017, 10, 38–54. DOI: 10.1186/s13068-017-0723-2.
  • He, M.; Yang, G.; Chen, J.; Ji, X.; Wang, Q. Production and Characterization of Cellulose Nanofibrils from Different Chemical and Mechanical Pulps. J. Wood Chem. Technol. 2018, 6, 1–10. DOI: 10.1080/02773813.2017.1411368.
  • Rodrigues, P. F.; Evtyugin, D. D.; Evtuguin, D. V.; Prates, A. Extractive Profiles in the Production of Sulfite Dissolving Pulp from Eucalyptus Globulus Wood. J Wood Chem. Technol. 2018, 38, 397–408. DOI: 10.1080/02773813.2018.1513037.
  • Kumar, H.; Christopher, L. P. Recent Trends and Developments in Dissolving Pulp Production and Application. Cellulose 2017, 24, 2347–2365. DOI: 10.1007/s10570-017-1285-y.
  • Li, J.; Zhang, S.; Li, H.; Huang, K.; Zheng, L.; Ouyang, X.; Zheng, Q.; Huang, L.; Chen, L.; Ni, Y. A New Approach to Improve Dissolving Pulp Properties: spraying Cellulase on Rewetted Pulp at a High Fiber Consistency. Cellulose 2018, 25, 6989–7002. DOI: 10.1007/s10570-018-2063-1.
  • Duan, C.; Verma, S. K.; Li, J.; Ma, X.; Ni, Y. Combination of Mechanical, Alkaline and Enzymatic Treatments to Upgrade Paper-Grade Pulp to Dissolving Pulp with High Reactivity. Biores. Technol. 2016, 200, 458–463. DOI: 10.1016/j.biortech.2015.10.067.
  • Wang, H.; Pang, B.; Wu, K.; Kong, F.; Li, B.; Mu, X. Two Stages of Treatments for Upgrading Bleached Softwood Paper Grade Pulp to Dissolving Pulp for Viscose Production. Biochem. Eng. J. 2014, 82, 183–187. DOI: 10.1016/j.bej.2013.11.019.
  • Arnoul-Jarriault, B.; Lachenal, D.; Chirat, C.; Heux, L. Upgrading Softwood Bleached Kraft Pulp to Dissolving Pulp by Cold Caustic Treatment and Acid-Hot Caustic Treatment. Industr. Crops Prod. 2015, 65, 565–571. DOI: 10.1016/j.indcrop.2014.09.051.
  • Hauru, L. K. J.; Hummel, M.; King, A. W. T.; Kilpeläinen, I.; Sixta, H. Role of Solvent Parameters in the Regeneration of Cellulose from Ionic Liquid Solutions. Biomacromol. 2012, 13, 2896–2905. DOI: 10.1021/bm300912y.
  • Wang, Q.; Liu, S.; Yang, G.; Chen, J.; Ni, Y. High Consistency Cellulase Treatment of Hardwood Prehydrolysis Kraft Based Dissolving Pulp. Biores. Technol. 2015, 189, 413–416. DOI: 10.1016/j.biortech.2015.04.069.
  • Liu, S.; He, H.; Fu, X.; Wang, Y.; Wang, Q.; Yang, G.; Chen, J. Correlation between Fock Reactivity and Intrinsic Viscosity of Dissolving Pulp during Cellulase Treatment. J Wood Chem Technol 2019a, 39, 296–303. DOI: 10.1080/02773813.2019.1565867.
  • Huang, K. X.; Luo, J.; Cao, R.; Su, Y.; Xu, Y. Enhanced Xylooligosaccharides Yields and Enzymatic Hydrolyzability of Cellulose Using Acetic Acid Catalysis of Poplar Sawdust. J. Wood Chem. Technol. 2018, 38, 371–384. DOI: 10.1080/02773813.2018.1500608.
  • Tu, M.; Saddler, J. N. Potential Enzyme Cost Reduction with the Addition of Surfactant during the Hydrolysis of Pretreated Softwood. Appl. Biochem. Biotechnol. 2010, 161, 274–287. DOI: 10.1007/s12010-009-8869-4.
  • Weiss, N.; Börjesson, J.; Pedersen, L. S.; Meyer, A. S. Enzymatic Lignocellulose Hydrolysis: Improved Cellulase Productivity by Insoluble Solids Recycling. Biotechnol. Biofuels 2013, 6, 5. DOI: 10.1186/1754-6834-6-5.
  • Nonaka, H.; Kobayashi, A.; Funaoka, M. Enzymatic Hydrolysis of Carboxymethylcellulose and Filter Paper by Immobilized Cellulases on Lignophenols. J. Wood Chem. Technol. 2014, 34, 169–177. DOI: 10.1080/02773813.2013.851246.
  • Wang, Q.; Zhu, J.; Hunt, C.; Zhan, H. Kinetics of Adsorption, Desorption, and Re‐Adsorption of a Commercial Endoglucanase in Lignocellulosic Suspensions. Biotechnol. Bioeng. 2012, 109, 1965–1975. DOI: 10.1002/bit.24483.
  • Nakamura, A.; Watanabe, H.; Ishida, T.; Uchihashi, T.; Wada, M.; Ando, T.; Igarashi, K.; Samejima, M. Trade-off between Processivity and Hydrolytic Velocity of Cellobiohydrolases at the Surface of Crystalline Cellulose. J. Am. Chem. Soc. 2014, 136, 4584–4592. DOI: 10.1021/ja4119994.
  • Helle, S.; Duff, S.; Cooper, D. Effect of Surfactants on Cellulose Hydrolysis. Biotechnol. Bioeng. 1993, 42, 611–617. DOI: 10.1002/bit.260420509.
  • Arantes, V.; Saddler, J. N. Cellulose Accessibility Limits the Effectiveness of Minimum Cellulase Loading on the Efficient Hydrolysis of Pretreated Lignocellulosic Substrates. Biotechnol. Biofuels 2011, 4, 3. DOI: 10.1186/1754-6834-4-3.
  • Lindedam, J.; Haven, M.; Chylenski, P.; Jørgensen, H.; Felby, C. Recycling Cellulases for Cellulosic Ethanol Production at Industrial Relevant Conditions: Potential and Temperature Dependency at High Solid Processes. Biores Technol 2013, 148, 180–188. DOI: 10.1016/j.biortech.2013.08.130.
  • Wang, Q.; Liu, S.; Yang, G.; Chen, J.; Ji, X.; Ni, Y. Recycling Cellulase towards Industrial Application of Enzyme Treatment on Hardwood Kraft-Based Dissolving Pulp. Biores. Technol. 2016, 212, 160–163. DOI: 10.1016/j.biortech.2016.04.048.
  • Otter, D.; Munro, P.; Scott, G.; Geddes, R. Desorption of Trichoderma reesei Cellulase from Cellulose by a Range of Desorbents. Biotechnol. Bioeng. 1989, 34, 291–298. DOI: 10.1002/bit.260340303.
  • Seo, D. J.; Fujita, H.; Sakoda, A. Effects of a Non-Ionic Surfactant, Tween 20, on Adsorption/Desorption of Saccharification Enzymes onto/from Lignocelluloses and Saccharification Rate. Adsorption 2011, 17, 813–822. DOI: 10.1016/S0141-0229(02)00134-5.
  • Linder, M.; Teeri, T. T. The Cellulose-Binding Domain of the Major Cellobiohydrolase of Trichoderma reesei Exhibits True Reversibility and a High Exchange Rate on Crystalline Cellulose. Proc. Nat. Acad. Sci. USA 1996, 93, 12251–12255. DOI: 10.1073/pnas.93.22.12251.
  • Zhu, Z.; Sathitsuksanoh, N.; Zhang, Y. Direct Quantitative Determination of Adsorbed Cellulase on Lignocellulosic Biomass with Its Application to Study Cellulase Desorption for Potential Recycling. Analyst 2009, 134, 2267–2272.
  • Tu, M.; Chandra, R. P.; Saddler, J. N. Recycling Cellulases during the Hydrolysis of Steam Exploded and Ethanol Pretreated Lodgepole Pine. Biotechnol. Prog. 2007, 23, 1130–1137. DOI: 10.1021/bp070129d.
  • Xin, D.; Yang, M.; Chen, X.; Zhang, Y.; M, L.; Zhang, J. Improving the Hydrolytic Action of Cellulases by Tween 80: offsetting the Lost Activity of Cellobiohydrolase Cel7A. ACS Sustainable Chem. Eng. 2017, 5, 11339–11345. DOI: 10.1021/acssuschemeng.7b02361.
  • Ghose, T. K. Measurement of Cellulase Activities. Pure Appl. Chem. 1987, 59, 257–268. DOI: 10.1351/pac198759020257.
  • Liu, H.; Zhu, J. Y.; Chai, X. S. In Situ, Rapid, and Temporally Resolved Measurements of Cellulase Adsorption onto Lignocellulosic Substrates by UV-Vis Spectrophotometry. Langmuir 2011, 27, 272–278. DOI: 10.1021/la103306v.
  • Duan, C.; Wang, X. Q.; Zhang, Y. L.; Xu, Y. J.; Ni, Y. Fractionation and Cellulase Treatment for Enhancing the Properties of Kraft-Based Dissolving Pulp. Biores. Technol. 2017, 224, 439–444. DOI: 10.1016/j.biortech.2016.10.077.
  • Tian, C.; Zheng, L.; Miao, Q.; Nash, C.; Cao, C.; Ni, Y. Improvement in the Fock Test for Determining the Reactivity of Dissolving Pulp. Tappi J. 2013, 12, 21–26. DOI: 10.32964/TJ12.11.21.
  • Kayitmazer, A. B.; Strand, S. P.; Tribet, C.; Jaeger, W.; Dubin, P. L. Effect of Polyelectrolyte Structure on Protein − Polyelectrolyte Coacervates: Coacervates of Bovine Serum Albumin with Poly(Diallyldimethylammonium Chloride) versus Chitosan. Biomacromol. 2007, 8, 3568–3577. DOI: 10.1021/bm700645t.
  • Eriksson, T.; Börjesson, J.; Tjerneld, F. Mechanism of Surfactant Effect in Enzymatic Hydrolysis of Lignocellulose. Enzyme Microbial Technol. 2002, 31, 353–364. DOI: 10.1016/S0141-0229(02)00134-5.
  • Yang, M.; Zhang, A.; Liu, B.; Li, W.; Xing, J. Improvement of Cellulose Conversion Caused by the Protection of Tween-80 on the Adsorbed Cellulase. Biochem. Eng. J. 2011, 56, 125–129. DOI: 10.1016/j.bej.2011.04.009.
  • Jin, W.; Chen, L.; Hu, M.; Sun, D.; Li, A.; Li, Y.; Hu, Z.; Zhou, S.; Tu, Y.; Xia, T.; et al. Tween-80 is Effective for Enhancing Steam-Exploded Biomass Enzymatic Saccharification and Ethanol Production by Specifically Lessening Cellulase Absorption with Lignin in Common Reed. Appl. Energy 2016, 175, 82–90. DOI: 10.1016/j.apenergy.2016.04.104.
  • Kaar, W. E.; Holtzapple, M. T. Benefits from Tween during Enzymic Hydrolysis of Corn Stover. Biotechnol. Bioeng. 1998, 59, 419–427. DOI: 10.1002/(SICI)1097-0290(19980820)59:4 < 419::AID-BIT4 > 3.0.CO;2-J.
  • Henzler, K.; Wittemann, A.; Breininger, E.; Ballauff, M.; Rosenfeldt, S. Adsorption of Bovine Hemoglobin onto Spherical Polyelectrolyte Brushes Monitored by Small-Angle X-Ray Scattering and Fourier Transform Infrared Spectroscopy. Biomacromol. 2007, 8, 3674–3681. DOI: 10.1021/bm700953e.
  • Wang, S. Y.; Chen, K. M.; Li, L.; Guo, X. H. Binding between Proteins and Cationic Spherical Polyelectrolyte Brushes: Effect of pH, Ionic Strength, and Stoichiometry. Biomacromol. 2013a, 14, 818–827. DOI: 10.1021/bm301865g.
  • Liu, S.; He, H.; Fu, X.; Wang, Y.; Wang, Q.; Yang, G.; Chen, J.; Ni, Y. Tween 80 Enhancing Cellulasic Activation of Hardwood Kraft-Based Dissolving Pulp. Industr. Crops Prod. 2019b, 137, 144–148. DOI: 10.1010/j.indcrop.2019.05.026.
  • Wang, Z.; Zhu, J.; Fu, Y.; Qin, M.; Shao, Z.; Jiang, J.; Yang, F. Lignosulfonate-Mediated Cellulase Adsorption: enhanced Enzymatic Saccharification of Lignocellulose through Weakening Nonproductive Binding to Lignin. Biotechnol. Biofuels 2013b, 6, 156. DOI: 10.1186/1754-6834-6-156.
  • Okino, S.; Ikeo, M.; Ueno, Y.; Taneda, D. Effect of Tween 80 on Cellulase Stability under Agitated Conditions. Biores. Technol. 2013, 142, 535–539. DOI: 10.1016/j.biortech.2013.05.078.
  • Yang, S.; Wen, Y.; Zhang, H.; Li, J.; Ni, Y. Enhancing the Fock Reactivity of Dissolving Pulp by the Combined Prerefining and Poly Dimethyl Diallyl Ammonium Chloride-Assisted Cellulase Treatment. Biores. Technol. 2018, 260, 135–140. DOI: 10.1016/j.biortech.2018.03.119.
  • Lou, H. M.; Zhou, H. F.; Li, X. L.; Wang, M. X.; Zhu, J. Y.; Qiu, X. Q. Understanding the Effects of Lignosulfonate on Enzymatic Saccharification of Pure Cellulose. Cellulose 2014, 21, 1351–1359. DOI: 10.1007/s10570-014-0237-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.