185
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Changes in supramolecular structure and improvement in reactivity of dissolving pulp via enzymatic pretreatment with processive endoglucanase EG1 from Volvaria volvacea

, , , , &

References

  • Kumar, H.; Christopher, L. P. Recent Trends and Developments in Dissolving Pulp Production and Application. Cellulose 2017, 24, 2347–2365. DOI: 10.1007/s10570-017-1285-y.
  • Liu, H.; Hu, H.; Jahan, M. S.; Ni, Y. Improvement of Furfural Production from Concentrated PreHydrolysis Liquor (PHL) of a Kraft-Based Hardwood Dissolving Pulp Production Process. J. Wood Chem. Technol. 2015, 35, 260–269. DOI: 10.1080/02773813.2014.945217.
  • Duan, C.; Qin, X.; Wang, X.; Feng, X.; Yu, H.; Dai, L.; Wang, W.; Zhao, W. Simultaneous Mechanical Refining and Phosphotungstic Acid Catalysis for Improving the Reactivity of Kraft-Based Dissolving Pulp. Cellulose 2019, 26, 5685–5694. DOI: 10.1007/s10570-019-02461-6.
  • Croon, I.; Jonsén, H.; Olofsson, H. G. Hemicellulose in Pulp, Viscose and Yarn. Svensk Papperstidn 1968, 71, 40–45.
  • Sixta, H.; Harms, H.; Dapia, S.; Parajo, J. C.; Puls, J.; Saake, B.; Fink, H. P.; Röder, T. Evaluation of New Organosolv Dissolving Pulps. Part I: Preparation, Analytical Characterization and Viscose Processability. Cellulose 2004, 11, 73–83. DOI: 10.1023/B:CELL.0000014767.47330.90.
  • Sixta, H.; Iakovlev, M.; Testova, L.; Roselli, A.; Hummel, M.; Borrega, M.; Heiningen, A.; Froschauer, C.; Schottenberger, H. Novel Concepts of Dissolving Pulp Production. Cellulose 2013, 20, 1547–1561. DOI: 10.1007/s10570-013-9943-1.
  • Li, H.; Legere, S.; He, Z.; Zhang, H.; Li, J.; Yang, B.; Zhang, S.; Zhang, L.; Zheng, L.; Ni, Y.; et al. Methods to Increase the Reactivity of Dissolving Pulp in the Viscose Rayon Production Process: A Review. Cellulose 2018, 25, 3733–3753. DOI: 10.1007/s10570-018-1840-1.
  • Liu, S.; He, H.; Fu, X.; Wang, Y.; Wang, Q.; Yang, G.; Chen, J. Correlation between Fock Reactivity and Intrinsic Viscosity of Dissolving Pulp during Cellulase Treatment. J. Wood Chem. Technol. 2019, 39, 296–298. DOI: 10.1080/02773813.2019.1565867.
  • Köpcke, V. Conversion of Wood and non-Wood Paper Grade Pulps into Dissolving Grade Pulps. Ph.D. Dissertation, Royal Institute of Technology, Stockholm, Sweden, 2010.
  • Krässig, H. A. Accessibility in Intercrystalline Reactions. In Cellulose: Structure, Accessibility and Reactivity, 1st ed. Gordon and Breach Science Publishers: Amsterdam, 1993, 187–214.
  • Duchesne, I.; Hult, E. L.; Molin, U.; Daniel, G.; Iversen, T.; Lennholm, H. The Influence of Hemicellulose on Fibril Aggregation of Kraft Pulp Fibres as Reveald by FE-SEM and CPMAS 13C-NMR. Cellulose 2001, 8, 103–111. DOI [Mismatch] DOI: 10.1023/A:1016645809958..
  • Hult, E. L.; Larsson, P. T.; Iversen, T. Cellulose Fibril Aggregation: An Inherent Property of Kraft Pulps. Polymer 2001, 42, 3309–3314. DOI: 10.1016/S0032-3861(00)00774-6.
  • Tian, C.; Zheng, L.; Miao, Q.; Cao, C.; Ni, Y. Improving the Reactivity of Kraft-Based Dissolving Pulp for Viscose Rayon Production by Mechanical Treatments. Cellulose 2014, 21, 3647–3654. DOI: 10.1007/s10570-014-0332-1.
  • Grönqvist, S.; Hakala, T. K.; Kamppuri, T.; Vehviläinen, M.; Hänninen, T.; Liitiä, T.; Maloney, T.; Suurnäkki, A. Fibre Porosity Development of Dissolving Pulp during Mechanical and Enzymatic Processing. Cellulose 2014, 21, 3667–3676. DOI: 10.1007/s10570-014-0352-x.
  • Pönni, R.; Pääkkönen, T.; Nuopponen, M.; Pere, J.; Vuorinen, T. Alkali Treatment of Birch Kraft Pulp to Enhance Its TEMPO Catalyzed Oxidation with Hypochlorite. Cellulose 2014, 21, 2859–2869. DOI: 10.1007/s10570-014-0278-3.
  • Weyenberg, I. V.; Chi Truong, I.; Vangrimde, T.; Verpoest, B. I. Improving the Properties of UD Flax Fibre Reinforced Composites by Applying an Alkaline Fibre Treatment. Compos Part A. Appl Sci Manuf 2006, 37, 1368–1376. compositesa.2005.08.016. DOI: 10.1016/j.compositesa.2005.08.016.
  • Mozdyniewicz, D. J.; Nieminen, K.; Sixta, H. Alkaline Steeping of Dissolving Pulp. Part I: cellulose Degradation Kinetics. Cellulose 2013, 20, 1437–1451. DOI: 10.1007/s10570-013-9926-2.
  • Gehmayr, V.; Sixta, H. Pulp Properties and Their Influence on Enzymatic Degradability. Biomacromol. 2012, 13, 645–651. DOI: 10.1021/bm201784u.
  • Duan, C.; Verma, S. K.; Li, J. G.; Ma, X. J.; Ni, Y. H. Viscosity Control and Reactivity Improvements of Cellulose Fibers by Cellulase Treatment. Cellulose 2016, 23, 269–276. DOI: 10.1007/s10570-015-0822-9.
  • Chiriac, A. I.; Pastor, F. I. J.; Popa, V. I.; Aflori, M.; Ciolacu, D. Changes of Supramolecular Cellulose Structure and Accessibility Induced by the Processive Endoglucanase Cel9B from Paenibacillus barcinonensis. Cellulose 2014, 21, 203–219. DOI: 10.1007/s10570-013-0118-x.
  • Miao, Q.; Chen, L.; Huang, L.; Tian, C.; Zheng, L.; Ni, Y. A Process for Enhancing the Accessibility and Reactivity of Hardwood Kraft-Based Dissolving Pulp for Viscose Rayon Production by Cellulase Treatment. Bioresour. Technol. 2014, 154, 109–113. DOI: 10.1016/j.biortech.2013.12.040.
  • Ibarra, D.; KöPcke, V.; Ek, M. Behavior of Different Monocomponent Endoglucanases on the Accessibility and Reactivity of Dissolving-Grade Pulps for Viscose Process. Enzyme Microb. Technol. 2010, 47, 355–362. DOI: 10.1016/j.enzmictec.2010.07.016.
  • Li, Y.; Irwin, D. C.; Wilson, D. B. Processivity, Substrate Binding, and Mechanism of Cellulose Hydrolysis by Thermobi fidafusca Cel9A. Appl. Environ. Microbiol. 2007, 73, 3165–3172. DOI: 10.1128/AEM.02960-06.
  • Sakon, J.; Irwin, D.; Wilson, B. D.; Karplus, P. A. Structure and Mechanism of Endo/Exocellulase E4 from Thermomonospora fusca. Nat. Struct. Mol. Biol. 1997, 4, 810–818. DOI: 10.1038/nsb1097-810.
  • Zhang, K.; Li, W.; Wang, Y.; Zheng, Y.; Tan, F.; Ma, X. Q.; Yao, L. S.; Bayer, E. A.; Wang, L.; Li, F. Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode. Biomacromol. 2018, 19, 1686–1696. DOI: 10.1021/acs.biomac.8b00340.
  • Wu, S.; Ding, S.; Zhou, R.; Li, Z. Comparative Characterization of a Recombinant Volvariella Volvacea Endoglucanase I (EG1) with Its Truncated Catalytic Core (EG1-CM), and Their Impact on the Bio-Treatment of Cellulose-Based Fabrics. J. Biotechnol. 2007, 130, 364–369. DOI: 10.1016/j.jbiotec.2007.05.016.
  • Somogyi, M. Notes on Sugar Determination. J. Biol. Chem 1952, 195, 19–23.
  • Tappi T230 om-13. Viscosity of Pulp (Capillary Viscometer Method); Tappi Press: Atlanta, GA.
  • Tian, C.; Zheng, L.; Miao, Q.; Nash, C.; Cao, C.; Ni, Y. Improvement in the Fock Test for Determining the Reactivity of Dissolving Pulp. Tappi J. 2013, 12, 21–26. DOI: 10.32964/TJ12.11.21.
  • Segal, L.; Creely, J. J.; Martin, A. E. Jr.; Conrad, C. M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Res. J. 1959, 29, 786–794. DOI: 10.1177/004051755902901003.
  • Ding, S. J.; Ge, W.; Buswell, J. A. Secretion, Purification and Characterization of a Recombinant Volvariella volvacea Endoglucanase Expressed in the Yeast Pichia pastoris. Enzyme Microb. Technol. 2002, 31, 621–626. DOI: 10.1016/S0141-0229(02)00168-0.
  • Quintana, E.; Valls, C.; Vidal, T.; Roncero, M. B. Comparative Evaluation of the Action of Two Different Endoglucanases. Part I: On a Fully Bleached, Commercial Acid Sulfite Dissolving Pulp. Cellulose 2015, 22, 2067–2079. DOI: 10.1007/s10570-015-0623-1.
  • Zheng, F.; Ding, S. Processivity and Enzymatic Mode of a Glycoside Hydrolase Family 5 Endoglucanase from Volvariella volvacea. Appl. Environ. Microbiol. 2013, 79, 989–996. DOI: 10.1128/AEM.02725-12.
  • Wu, S.; Wu, S. Processivity and the Mechanisms of Processive Endoglucanases. Appl. Biochem. Biotechnol. 2020, 190, 448–463. DOI: 10.1007/s12010-019-03096-w.
  • Hoshino, E.; Wada, Y.; Nishizawa, K. Improvements in the Hygroscopic Properties of Cotton Cellulose by Treatment with an Endo-Type Cellulase from Streptomyces sp.KSM-26. J. Biosci. Bioeng. 1999, 88, 519–525. DOI: 10.1016/S1389-1723(00)87669-0.
  • McLean, B. W.; Bray, M. R.; Boraston, A. B.; Gilkes, N. R.; Haynes, C. A.; Kilburn, D. G. Analysis of Binding of the Family 2a Carbohydrate-Binding Module from Cellulomonas Fimi Xylanase 10A to Cellulose: Specificity and Identification of Functionally Important Amino Acid Residues. Protein Eng. 2000, 13, 801–809. DOI: 10.1093/protein/13.11.801.
  • Grigoriu, A. M.; Luca, C.; Lisa, G.; Grigoriu, A. On the Thermal Stability of Flax Fabrics Grafted with Monochlorotriazinyl-β-Cyclodextrin and Treated with Cinnamic Derivatives. Cell Chem Technol. 2009, 43, 153–161.
  • Ciolacu, D.; Popa, V. I. Structural Changes of Cellulose Determined by Dissolution in Aqueous Alkali Solution. Cell Chem. Technol. 2005, 39, 179–188.
  • Gharehkhani, S.; Sadeghinezhad, E.; Kazi S N; Yarmand H; Badarudin, A.; Safaei, M. R.; Zubir, M. Basic Effects of Pulp Refining on Fiber Properties-a Review. Carbohydrate Polymers 2015, 22, 785–780. DOI: 10.1016/j.carbpol.2014.08.047.
  • Ibrahem, A.; Yousef, M.; El-Meadawy, S. Effect of Beating on Fiber Crystallinity and Physical Properties of Paper Sheets. J. Islamic Acad. Sci. 1989, 2, 295–298.
  • Tormo, J.; Lamed, R.; Chirino, A. J.; Morag, E.; Bayer, E. A.; Shoham, Y.; Steitz, T. A. Crystal Structure of a Bacterial Family-III Cellulose-Binding Domain: A General Mechanism for Attachment to Cellulose. Embo J. 1996, 15, 5739–5751. DOI: 10.1002/j.1460-2075.1996.tb00960.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.