350
Views
13
CrossRef citations to date
0
Altmetric
Articles

Structural changes in lignin of thermally treated eucalyptus wood

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Rowell, R.M. Chemical Modification of Wood. Forest Prod. Abstracts 1983, 6, 363–382.
  • Jones, D.; Brischke, C. (Eds) Performance of Bio-based Building Materials; Woodhead Publishing, Elsevier Ltd.: Amsterdam, 2017.
  • Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of Wood Thermal Pretreatments to Improve Wood Composite Properties. Wood Sci. Technol. 2013, 47, 1285–1319. DOI: 10.1007/s00226-013-0574-3.
  • Silva, C.M.S.; Carneiro, A.C.O.; Vital, B.R.; Figueiró, C.G.; Fialho, L.F.; Magalhães, M.A.; Carvalho, A.G.; Cândido, W.L. Biomass Torrefaction for Energy Purposes - Definitions and an Overview of Challenges and Opportunities in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2426–2432. DOI: 10.1016/j.rser.2017.08.095.
  • Esteves, B.M.; Pereira, H. Wood Modification by Heat Treatment: A Review. Bioresources 2009, 4, 370–404.
  • Militz, H. Heat Treatment Technologies in Europe: Scientific Background And Technological State-of-Art. In Proceedings of conference on ‘‘enhancing the durability of lumber and engineered wood products’’, February 11–13, Kissimmee, Orlando; Forest Products Society: Madison, US, 2002.
  • Rodrigues, T. Efeitos Da Torrefação no Condicionamento De Biomassa para Fins Energéticos. Master’s Thesis, University of Brasília, Brasília, Brazil, 2009.
  • Ru, B.; Wang, S.; Dai, G.; Zhang, L. Effect of Torrefaction on Biomass Physicochemical Characteristics and the Resulting Pyrolysis Behavior. Energy Fuels 2015, 29, 5865–5874. DOI: 10.1021/acs.energyfuels.5b01263.
  • Wentzel, M.; Fleckenstein, M.; Hofmann, T.; Militz, H. Relation of Chemical and Mechanical Properties of Eucalyptus Nitens Wood Thermally Modified in Open and Closed Systems. Wood Mater. Sci. Eng. 2019, 14, 165–173. DOI: 10.1080/17480272.2018.1450783.
  • Bhuiyan, R.; Hirai, T.; Sobue, N.N. Effect of Intermittent Heat Treatment on Crystallinity in Wood Cellulose. J. Wood Sci. 2001, 47, 336–341. DOI: 10.1007/BF00766782.
  • Winandy, J.E.; Lebow, P.K. Modelling Strength Loss in Wood by Chemical Composition. Part I. An Individual Component Model for Southern Pine. Wood Fiber Sci. 2001, 33, 239–254.
  • Sweet, M.S.; Winandy, J.E. Influence of Degree of Polymerization of Cellulose And Hemicellulose on Strength Loss in Fire-Retardant-Treated Southern Pine. Holzforschung 1999, 53, 311–317. DOI: 10.1515/HF.1999.051.
  • Tarmian, A.; Mastouri, A. Changes in Moisture Exclusion Efficiency and Crystallinity of Thermally Modified Wood with Aging. iForest 2019, 12, 92–97. DOI: 10.3832/ifor2723-011.
  • Ciolkosz, D.; Wallace, R. A Review of Torrefaction for Bioenergy Feedstock Production. Biofuels Bioprod. Bioref. 2011, 5, 317–329. DOI: 10.1002/bbb.275.
  • Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement. Holz als Roh-und Werkstoff 1998, 56, 149–153. DOI: 10.1007/s001070050287.
  • Melkior, T.; Jacob, S.; Gerbaud, G.; Hediger, S.; Pape, L.L.; Bonnefois, L.; Bardet, M. NMR Analysis of the Transformation of Wood Constituents by Torrefaction. Fuel 2012, 92, 271–280. DOI: 10.1016/j.fuel.2011.06.042.
  • Park, J.; Meng, J.; Lim, K.H.; Rojas, O.J.; Park, S. Transformations of Lignocellulosic Biomass During Torrefaction. J. Anal. Appl. Pyrol. 2013, 100, 199–206. DOI: 10.1016/j.jaap.2012.12.024.
  • Pereira, H.; Miranda, I.; Gominho, J.; Tavares, F.; Quilhó, T.; Graça, J.; Rodrigues, J.; Shatalov, A.; Knapic, S. Qualidade Tecnológica do Eucalyptus globulus. In Centro de Estudos Florestais (Ed.); Instituto Superior de Agronomia, Universidade Técnica de Lisboa: Lisboa, 2010.
  • Rockwood, D.L.; Rudie, A.W.; Ralph, S.A.; Zhu, J.L.; Winandy, J.E. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops. IJMS 2008, 9, 1361–1378. DOI: 10.3390/ijms9081361.
  • Acosta, M.S.; Mastrandrea, C.; Lima, J.T. Wood Technologies and Uses of Eucalyptus Wood From Fast Grown Plantations for Solid Products. In Proceedings of the 51th International Convention of Society of Wood Science and Technology, November 10-12; Concepcíon, Chile, 2008.
  • Santos, J.A.; Pinho, A.C.M. New Advances for the Application of Eucalyptus as a Structural Wood. Silva Lusitana 2004, 12, 43–50.
  • Araújo, S.O.; Neiva, D.M.; Carneiro, A.C.; Esteves, B.; Pereira, H. Potential of Mild Torrefaction For Upgrading the Wood Energy Value of Different Eucalyptus Species. Forests 2018, 9, 535–542. DOI: 10.3390/f9090535.
  • Araújo, S.O.; Neiva, D.M.; Gominho, J.; Esteves, B.; Pereira, H. Chemical Effects of a Mild Torrefaction on the Wood of Eight Eucalyptus Species. Holzforschung 2017, 71, 291–298. DOI: 10.1515/hf-2016-0079.
  • Evtuguin, D.V.; Neto, C.P.; Silva, A.M.S.; Domingues, P.M.; Amado, F.M.L.; Robert, D.; Faix, O. Comprehensive Study on the Chemical Structure of Dioxane Lignin From Plantation Eucalyptus globulus Wood. J. Agric. Food Chem. 2001, 49, 4252–4261. DOI: 10.1021/jf010315d.
  • Jakab, E. Analytical Techniques as a Tool to Understand The Reaction Mechanism. In Recent Advances in Thermo-Chemical Conversion of Biomass; Pandey, A., Stöcke, M.; Bhaskar, T.; Sukumaran R.K., Eds.; Elsevier B.V.: Amsterdam, 2015, 75–108.
  • Pinto, F.; Gominho, J.; André, R.N.; Gonçalves, D.; Miranda, M.; Varela, F.; Neves, D.; Santos, J.; Lourenço, A.; Pereira, H. Improvement of Gasification Performance of Eucalyptus globulus Stumps With Torrefaction and Densification Pre-Treatments. Fuel 2017, 206, 289–299. DOI: 10.1016/j.fuel.2017.06.008.
  • Evtuguin, D.V.; Domingues, P.N.; Amado, F.L.; Pascoal Neto, C.; Ferrer Correia, A. Electrospray Ionization Mass Spectrometry as a Tool For Lignins Molecular Weight And Structural Characterization. Holzforschung 1999, 53, 525–528. DOI: 10.1515/HF.1999.086.
  • Bland, D.E. The Composition and Analysis of Eucalypt Woods. Appita J. 1985, 38, 291–294.
  • Esteves, B.; Graça, J.; Pereira, H. Extractive Composition and Summative Chemical Analysis of Thermally Treated Eucalypt Wood. Holzforschung 2008, 62, 344–351. DOI: 10.1515/HF.2008.057.
  • Hawkes, G.E.; Smith, C.Z.; Utley, J.H.P.; Vargas, R.R.; Viertler, H. A Comparison of Solution and Solid-State 13C NMR Spectra of Lignins and Lignin Model Compounds. Holzforschung 1993, 47, 302–312. DOI: 10.1515/hfsg.1993.47.4.302.
  • Kim, S.; Chmely, S.C.; Nimlos, M.R.; Bomble, Y.J.; Foust, T.D.; Paton, R.S.; Beckham, G.T. Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins. J. Phys. Chem. Lett. 2011, 2, 2846–2852. DOI: 10.1021/jz201182w.
  • Kawamoto, H. Lignin Pyrolysis Reactions. J. Wood Sci. 2017, 63, 117–132. DOI: 10.1007/s10086-016-1606-z.
  • Prozil, S.O.; Evtuguin, D.V.; Silva, A.M.S.; Lopes, L.P.C. Structural Characterization of Lignin from Grape Stalks (Vitis vinifera L.). J. Agric. Food Chem. 2014, 62, 5420–5428. DOI: 10.1021/jf502267s.
  • Li, X.-C.; Elsohly, H.N.; Hufford, C.D.; Clark, A.M. NMR Assignments of Ellagic Acid Derivatives. Magn. Reson. Chem. 1999, 37, 856–859. DOI: 10.1002/(SICI)1097-458X(199911)37:11<856::AID-MRC529>3.0.CO;2-X.
  • Robert, D. Carbon-13 Nuclear Magnetic Resonance Spectrometry. In Methods in Lignin Chemistry; Lin, S.Y.; Dence, C.W., Eds., Springer Verlag: Berlin, Germany, 1992; 250–273.
  • Ralph, J.; Marita, J.M.; Ralph, S.; Hatfield, R.D.; Lu, F.; Ede, R.M.; Peng, J.; Quideau, S.; Helm, R.F.; Grabber, J.H.; et al. Solution-State NMR of Lignins. In: Advances in Lignocellulosics Characterization; Argyropoulos, D.S., Ed.; Tappi Press: Atlanta, 1999; 55–108.
  • Suryan, M.M.; Kafafi, S.A.; Stein, S.E. Dissociation of Substituted Anisoles: Substituent Effects on Bond Strengths. J. Am. Chem. Soc. 1989, 111, 4594–4600. DOI: 10.1021/ja00195a011.
  • Pinto, O.; Romero, R.; Carrier, M.; Appelt, J.; Segura, C. Fast Pyrolysis of Tannins From Pine Bark as a Renewable Source of Catechols. J. Anal. Appl. Pyrol. 2018, 136, 69–76. DOI: 10.1016/j.jaap.2018.10.022.
  • Parthasarathi, R.; Romero, R.A.; Redondo, A.; Gnanakaran, S. Theoretical Study of The Remarkably Diverse Linkages in Lignin. J. Phys. Chem. Lett. 2011, 2, 2660–2666. DOI: 10.1021/jz201201q.
  • Evtuguin, D.V.; Pascoal Neto, C.; Silvestre, A.J.D. Condensation Reactions of Lignin during Oxygen Delignification under Acidic Conditions. J. Wood Chem. Technol. 1997, 17, 41–55. DOI: 10.1080/02773819708003117.
  • Obame, S.M.; Ziegler-Devin, I.; Safou-Tchima, R.; Brosse, N. Homolytic and Heterolytic Cleavage of β-Ether Linkages in Hardwood Lignin by Steam Explosion. J. Agric. Food Chem. 2019, 67, 5989–5996. DOI: 10.1021/acs.jafc.9b01744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.