210
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Influence of acid prehydrolysis on the process of wood oxidation into vanillin and pulp

, , , , &

References

  • Varfolomeev, S. D.; Moiseev, I. I.; Myasoedov, B. F. Energy Carriers from Renewable Sources: Chemical Aspects. Her. Russ. Acad. Sci. 2009, 79, 334–342. DOI: 10.1134/S1019331609040030.
  • Brauns, F. E.; Brauns, D. A. Chemistry of Lignin; Academic Press: New York, London, 1960, pp. 409–464
  • Tarabanko, V. E.; Tarabanko, N. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: general Process Trends and Development Prospects. IJMS 2017, 18, 2421. DOI: 10.3390/ijms18112421.
  • Sharkov, V. I.; Kuybina, N. I. Chemistry of Hemicelluloses; Lesnaya Prom.: Moscow, Russia, 1972; 440 pp.
  • Buzała, K.; Przybysz, P.; Rosicka-Kaczmarek, J.; Kalinowska, H. Production of Glucose-Rich Enzymatic Hydrolysates from Cellulosic Pulps. Cellulose 2015, 22, 663–674. DOI: 10.1007/s10570-014-0522-x.
  • Corma, A.; Oliver-Tomas, B.; Renz, M.; Simakova, I. L. Conversion of Levulinic Acid Derived Valeric Acid into a Liquid Transportation Fuel of the Kerosene Type. J. Mol. Cat. A Chem. 2014, 388389, 116–122. DOI: 10.1016/j.molcata.2013.11.015.
  • Wu, G.; Heitz, M.; Chornet, E. Improved Alkaline Oxidation Process for the Production of Aldehydes from Steam-Explosion Lignin. Ind. Eng. Chem. Res. 1994, 33, 718–723. DOI: 10.1021/ie00027a034.
  • Borges da Silva, E. A.; Zabkova, M.; Araujo, J. D.; Cateto, C. A.; Barreiro, M. F.; Belgacem, M. N.; Rodrigues, A. E. An Integrated Process to Produce Vanillin and Lignin-Based Polyurethanes from Kraft Lignin. Chem. Eng. Res. Des. 2009, 9, 1276–1292. DOI: 10.1016/j.cherd.2009.05.008.
  • Schutyser, W.; Kruger, J. S.; Robinson, A. M.; Katahira, R.; Brandner, D. G.; Cleveland, N. S.; Mittal, A.; Peterson, D. J.; Meilan, R.; Román-Leshkov, Y.; et al. Revisiting Alkaline Aerobic Lignin Oxidation. Green Chem. 2018, 20, 3828–3844. DOI: 10.1039/C8GC00502H.
  • Tarabanko, V. E.; Pervyshina, E. P.; Kuznetsov, B. N. Method for processing wood into fine organic synthesis products. Russian Patent 2,119,427, 1998.
  • Tarabanko, V. E.; Shambazov, V. K.; Kuznetsova, S. A.; Kuznetsov, B. N. The method of processing wood small-leaved species into valuable organic products. Russian Patent 2,219,048, 35, 2003.
  • Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Schutyser, W.; Sels, B. F. Lignin-First Biomass Fractionation: The Advent of Active Stabilisation Strategies. Energy Environ. Sci. 2017, 10, 1551–1557. DOI: 10.1039/C7EE01298E.
  • Tarabanko, V. E.; Kaygorodov, K. L.; Skiba, E. A.; Tarabanko, N.; Chelbina, Y. V.; Baybakova, O. V.; Kuznetsov, B. N.; Djakovitch, L. Processing Pine Wood into Vanillin and Glucose by Sequential Catalytic Oxidation and Enzymatic Hydrolysis. J. Wood Chem. Technol. 2017, 37, 43–51. DOI: 10.1080/02773813.2016.1235583.
  • Zhu, Y. T.; Liao, Y. H.; Lv, W.; Liu, J.; Song, X. B.; Chen, L. G.; Wang, C. G.; Sels, B. F.; Ma, L. L. Complementing Vanillin and Cellulose Production by Oxidation of Lignocellulose with Stirring Control. ACS Sustainable Chem. Eng. 2020, 8, 2361–2374. DOI: 10.1021/acssuschemeng.9b04837.
  • Tarabanko, V. E.; Fomova, N. A.; Kuznetsov, B. N.; Kudryashev, A. V.; Ivanchenko, N. M. On the Mechanism of Vanillin Formation in Catalytic Oxidation of Lignin with Oxygen. React. Kinet. Catal. Lett. 1995, 55, 161–170. DOI: 10.1007/BF02075847.
  • Andrzej, W.; Pacek, A. W.; Ding, P.; Garrett, M.; Sheldrake, G.; Nienow, A. W. Catalytic Conversion of Sodium Lignosulfonate to Vanillin: Engineering Aspects. Part 1. Effects of Processing Conditions on Vanillin Yield and Selectivity. Ind. Eng. Chem. Res. 2013, 25, 8361–8372. DOI: 10.1021/ie4007744.
  • Tarabanko, V. E.; Petukhov, D. V.; Selyutin, G. E. New Mechanism for the Catalytic Oxidation of Lignin to Vanillin. Kinet. Catal. 2004, 45, 569–577. DOI: 10.1023/B:KICA.0000038087.95130.a5.
  • Taraban'ko, V. E.; Koropatchinskaya, N. V.; Kudryashev, A. V.; Kuznetsov, B. N. The Influence of the Lignin Nature on the Efficiency of Catalyzed Oxidation to Vanillin and Syringaldehyde. Russ. Chem. Bull. 1995, 44, 367–371. DOI: 10.1007/BF00702154.
  • Kamaldina, O. D.; Massov, Y. A. Preparation of Vanillin from Lignosulfonates; TsBTI TsINIS: Moscow, Russia, 1959, p. 31.
  • Tarabanko, V. E.; Kaygorodov, K. L.; Koropachinskaya, N. V.; Chelbina, Y. V.; Ilyin, A. A. Preparation of Aromatic Aldehydes from Biobutanol Production Wastes. Chem. Sustainable Dev. 2012, 20, 425–430.
  • Pepper, J. M.; Casselman, B. W.; Karapally, J. C. Lignin Oxidation. Preferential Use of Cupric Oxide. Can. J. Chem. 1967, 45, 3009–3012. DOI: 10.1139/v67-487.
  • Villar, J. C.; Caperos, A.; Garcia, O. F. Oxidation of Hardwood Kraft-Lignin to Phenolic Derivatives: Nitrobenzene and Copper Oxide as Oxidation. J. Wood Chem. Technol. 1997, 3, 259–285. DOI: 10.1080/02773819708003131.
  • Pinto, P. C. R.; Costa, C. E.; Rodrigues, A. E. Oxidation of Lignin from Eucalyptus Globulus Pulping Liquors to Produce Syringaldehyde and Vanillin. Ind. Eng. Chem. Res. 2013, 52, 4421–−4428. DOI: 10.1021/ie303349j.
  • Haslam, E., Ed.Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds. V. 5. Biological Compounds; Pergamon press: Oxford, New York, 1978, pp. 155–158.
  • Kurshner, K. The Difficulties in the Production of Vanillin from Sulphite Liquors. Rus. J. Appl. Chem. 1955, 28, 957–968.
  • Xiang, Q.; Lee, Y. Y. Production of Oxychemicals from Precipitated Hardwood Lignin. App. Biochem. Biotech. 2001, 91–93, 71–80. DOI: 10.1385/ABAB:91-93:1-9:71.
  • Sales, F. G.; Maranhao, L. C. A.; Filho, N. M. L.; Abreu, C. A. M. Kinetic Evaluation and Modeling of Lignin Catalytic Wet Oxidation to Selective Production of Aromatic Aldehydes. Ind. Eng. Chem. Res. 2006, 45, 6627–6631. DOI: 10.1021/ie0601697.
  • Moskovtsev, N. G.; Strelskaya, S. A. Composition and Properties of the Sediment Formed during the Conversion of Water Prehydrolysates of Wood. Wood Chem. 1986, 1, 63–67.
  • TAPPI Chemical Properties Committee of the Process and Product Quality Division. Solvent Extractives of Wood and Pulp. TAPPI Stand. Test Method 1997, 204.
  • TAPPI Chemical Properties Committee of the Process and Product Quality Division. Acid-Insoluble Lignin in Wood and Pulp. TAPPI Stand. Test Method 2002, 222.
  • Higgins, F. J.; Ho, G. E. Hydrolysis of Cellulose Using HCl: A Comparison between Liquid Phase and Gaseous Phase Processes. Agric. Wastes 1982, 4, 97–116. DOI: 10.1016/0141-4607(82)90019-1.
  • Pääkkönen, T.; Spiliopoulos, P.; Knuts, A.; Nieminen, K.; Johansson, L.-S.; Enqvist, E.; Kontturi, E. From Vapour to Gas: Optimising Cellulose Degradation with Gaseous HCl. React. Chem. Eng. 2018, 3, 312–318. DOI: 10.1039/C7RE00215G.
  • Wang, J.; Liu, X.; Jin, T.; He, H.; Liu, L. Preparation of Nanocellulose and Its Potential in Reinforced Composites: A Review. J. Biomater. Sci. – Polym. Ed. 2019, 30, 919–946. DOI: 10.1080/09205063.2019.1612726.
  • Keshk, S. A. S. Effect of Different Alkaline Solutions on Crystalline Structure of Cellulose at Different Temperatures. Carbohydr. Polym. 2015, 115, 658–662. DOI: 10.1016/j.carbpol.2014.09.045Get.
  • Knill, C. J.; Kennedy, J. F. Degradation of Cellulose under Alkaline Conditions. Carbohydr. Polym. 2003, 51, 281–300. DOI: 10.1016/S0144-8617(02)00183-2.
  • Kaygorodov, K. L.; Tarabanko, V. E.; Chernyak, M. Y.; Chelbina, Y. V.; Tarabanko, N.; Smirnova, M. A. Kinetics of Low-Temperature Oxidation of Enzymatic Lignin from Pine Wood (Pinus Sylvestris) in an Aqueous Alkaline Medium. Russ. J. Bioorg. Chem. 2018, 44, 839–736. DOI: 10.1134/S106816201807004X.
  • Kaigorodov, K. L.; Tarabanko, V. E.; Chernyak, M. Y.; Chelbina, Y. V.; Tarabanko, N. V.; Smirnova, M. A. Kinetics of Low-Temperature Oxidation of Enzymatic Lignin from Pine Wood (Pinus Sylvestris) in an Aqueous Alkaline Medium. Khimiya Rastitel’nogo Syr’ya 2017, 3, 63–70. DOI: 10.1134/S106816201807004X.
  • Meshgini, M.; Sarkanen, K. V. Synthesis and Kinetics of Acid-Catalyzed Hydrolysis of Some Alpha-Aryl Ether Lignin Model Compounds. Holzforschung 1989, 43, 239–243. DOI: 10.1515/hfsg.1989.43.4.239.
  • Zhao, X.; Liu, D. Kinetic Modeling and Mechanisms of Acid-Catalyzed Delignification of Sugarcane Bagasse by Aqueous Acetic Acid. Bioenerg. Res. 2013, 6, 436–447. DOI: 10.1007/s12155-012-9265-4.
  • Evstigneyev, E. I.; Shevchenko, S. M. Structure, Chemical Reactivity and Solubility of Lignin: A Fresh Look. Wood Sci. Technol. 2019, 53, 7–47. DOI: 10.1007/s00226-018-1059-1.
  • Singh, S.; Ghatak, H. R. Vanillin Formation by Electrooxidation of Lignin on Stainless Steel Anode: Kinetics and by-Products. J. Wood Chem. Technol. 2017, 37, 407–422. DOI: 10.1080/02773813.2017.1310899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.