343
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial and antioxidant activities of flavonoids isolated from wood of sweet cherry tree (Prunus avium L.)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Rosales-Castro, M.; González-Laredo, R. F.; Rivas-Arreola, M. J.; Karchesy, J. Chemical Analysis of Polyphenols with Antioxidant Capacity from Pinus Durangensis Bark. J. Wood Chem. Technol. 2017, 37, 393–404. DOI: 10.1080/02773813.2017.1310898.
  • Arun, K. B.; Madhavan, A.; Sindhu, R.; Binod, P.; Pandey, A.; Reshmy, R.; Sirohi, R. Remodeling Agro-Industrial and Food Wastes into Value-Added Bioactives and Biopolymers. Ind. Crops Prod. 2020, 154, 112621. DOI: 10.1016/j.indcrop.2020.112621.
  • Dahmani-Hamzaoui, N.; Salido, S.; Linares-Palomino, P. J.; Baaliouamer, A.; Altarejos, J. On-Line Radical Scavenging Detection and Characterizacion of Antioxidant from Artemisia Herba-Alba. HCA. 2012, 95, 564–576. DOI: 10.1002/hlca.201100367.
  • Alejo-Armijo, A.; Tello-Abolafia, A.; Salido, S.; Altarejos, J. Phenolic Compounds in Laurel Wood: A New Source of Proanthocyanidins. J. Wood. Chem. Technol. 2019, 39, 436–453. DOI: 10.1080/02773813.2019.1636825.
  • Blando, F.; Dave, O. B. Sweet and Sour Cherries: Origin, Distribution, Nutritional Composition and Health Benefits. Trends Food Sci. Technol. 2019, 86, 517–529. DOI: 10.1016/j.tifs.2019.02.052.
  • FAOSTAT, F.A.O. Food and Agriculture Organization of the United Nations. 2018. http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed November 4, 2020).
  • Bastos, C.; Barros, L.; Dueñas, M.; Calhelha, R. C.; Queiroz, M. J.; Santos-Buelga, C.; Ferreira, I. C. Chemical Characterisation and Bioactive Properties of Prunus avium L.: The Widely Studied Fruits and the Unexplored Stems. Food Chem. 2015, 173, 1045–1053. DOI: 10.1016/j.foodchem.2014.10.145.
  • Martínez-Gil, A.; Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Alternative Woods in Enology: Characterization of Tannin and Low Molecular Weight Phenol Compounds with Respect to Traditional Oak Woods. A Review. Molecules. 2020, 25, 1474. DOI: 10.3390/molecules25061474.
  • Nunes, I.; Correia, A. C.; Jordão, A. M.; Ricardo-da-Silva, J. M. Use of Oak and Cherry Wood Chips during Alcoholic Fermentation and the Maturation Process of Rosé Wines: Impact on Phenolic Composition and Sensory Profile. Molecules. 2020, 25, 1236. DOI: 10.3390/molecules25051236.
  • Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A. M.; Fernández De Simón, B.; Hernández, T.; Estrella, I. Phenolic Compounds in Cherry (Prunus avium) Heartwood with a View to Their Use in Cooperage. J. Agric. Food Chem. 2010, 58, 4907–4914. DOI: 10.1021/jf100236v.
  • McNulty, J.; Nair, J. J.; Bollareddy, E.; Keskar, K.; Thorat, A.; Crankshaw, D. J.; Holloway, A. C.; Khan, G.; Wright, G. D.; Ejim, L. Isolation of Flavonoids from the Heartwood and Resin of Prunus avium and Some Preliminary Biological Investigations. Phytochemistry. 2009, 70, 2040–2046. DOI: 10.1016/j.phytochem.2009.08.018.
  • Vinciguerra, V.; Luna, M.; Bistoni, A.; Zollo, F. Variation in the Composition of the Heartwood Flavonoids of Prunus avium by on-Column Capillary Gas Chromatography. Phytochem. Anal. 2003, 14, 371–377. DOI: 10.1002/pca.730.
  • Palmieri, G.; Balestrieri, M.; Capuano, F.; Proroga, Y. T. R.; Pomilio, F.; Centorame, P.; Riccio, A.; Marrone, R.; Anastasio, A. Bactericidal and Antibiofilm Activity of Bactenecin-Derivative Peptides against the Food-Pathogen Listeria Monocytogenes: New Perspectives for Food Processing Industry. Int. J. Food Microbiol. 2018, 279, 33–42. DOI: 10.1016/j.ijfoodmicro.2018.04.039.
  • Penesyan, A.; Gillings, M.; Paulsen, I. T. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules. 2015, 20, 5286–5298. DOI: 10.3390/ijms20246297.
  • Gorniak, I.; Bartoszewski, R.; Kroliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. DOI: 10.1007/s11101-018-9591-z.
  • Fernández-Fuentes, M. A.; Ortega Morente, E.; Abriouel, H.; Pérez Pulido, R.; Gálvez, A. Isolation and Identification of Bacteria from Organic Foods: Sensitivity to Biocides and Antibiotics. Food Control. 2012, 26, 73–78. DOI: 10.1016/j.foodcont.2012.01.017.
  • Pérez-Bonilla, M.; Salido, S.; van Beek, T. A.; de Waard, P.; Linares-Palomino, P. J.; Sánchez, A.; Altarejos, J. Isolation of Antioxidative Secoiridoids from Olive Wood (Olea europaea L.) Guided by on-Line HPLC–DAD–Radical Scavenging Detection. Food Chem. 2011, 124, 36–41. DOI: 10.1016/j.foodchem.2010.05.099.
  • Diez-Bello, R.; Jardin, I.; Lopez, J. J.; El Haouari, M.; Ortega-Vidal, J.; Altarejos, J.; Salido, G. M.; Salido, S.; Rosado, J. A. (-)‑Oleocanthal Inhibits Proliferation and Migration by Modulating Ca2+ Entry Through TRPC6 in Breast Cancer Cells. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 474–485. DOI: 10.1016/j.bbamcr.2018.10.010.
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement, Vol. 34. Document M100eS24, No. 3; CLSI: Wayne, PA, 2015.
  • Ulrey, R. K.; Barksdale, S. M.; Zhou, W.; van Hoek, M. L. Cranberry Proanthocyanidins Have anti-Biofilm Properties against Pseudomonas aeruginosa. BMC Complement Altern. Med. 2014, 14, 499–511. DOI: 10.1186/1472-6882-14-499.
  • Djordjevic, D.; Wiedmann, M.; McLandsborough, L. A. Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. DOI: 10.1128/aem.68.6.2950-2958.2002.
  • Dean, S. N.; Bishop, B. M.; van Hoek, M. L. Natural and Synthetic Cathelicidin Peptides with anti-Microbial and anti-Biofilm Activity against Staphylococcus aureus. BMC Microbiol. 2011, 11, 114–126. DOI: 10.1186/1471-2180-11-114.
  • van Beek, T. A.; Tetala, K. K. R.; Koleva, I. I.; Dapkevicius, A.; Exarchou, V.; Jeurissen, S. M. F.; Claassen, F. W.; Klift, E. J. C. Recent Developments in the Rapid Analysis of Plants and Tracking Their Bioactive Constituents. Phytochem. Rev. 2009, 8, 387–399. DOI: 10.1007/s11101-009-9125-9.
  • Nonaka, G.-I.; Goto, Y. U. K. O.; Kinjo, J.-E. I.; Nohara, T.; Nishioka, I. Nishioka, I. Tannin and Related Compounds. LII. Studies on the Constituents of the Leaves of Thujopsis Dolabrata SIEB. et ZUCC. Chem. Pharm. Bull. 1987, 35, 1105–1108. DOI: 10.1248/cpb.35.149.
  • Noferi, M.; Masson, E.; Merlin, A.; Pizzi, A.; Deglise, X. Antioxidant Characteristics of Hydrolysable and Polyflavonoid Tannins: An ESR Kinetics Study. J. Appl. Polym. Sci. 1997, 63, 475–482. DOI: 10.1002/(SICI)1097-4628(19970124)63:4 < 475::AID-APP9 > 3.0.CO;2-O.
  • Foo, L. Y.; Karchesy, J. J. Polyphenolic Glycosides from Douglas Fir Inner Bark. Phytochemistry. 1989, 28, 1237–1240. DOI: 10.1016/0031-9422(89)80217-1.
  • Moore, B. S.; Poralla, K.; Floss, H. G. Biosynthesis of the Cyclohexanecarboxylic Acid Starter Unit of ω-Cyclohexyl Fatty Acids in Alicyclobacillus acidocaldarius. J. Am. Chem. Soc. 1993, 115, 5267–5274. DOI: 10.1021/ja00065a043.
  • Zhang, X.; Hung, T. M.; Phuong, P. T.; Ngoc, T. M.; Min, B. S.; Song, K. S.; Seong, Y. H.; Bae, K. Anti-Inflammatory Activity of Flavonoids from Populus Davidiana. Arch. Pharm. Res. 2006, 29, 1102–1108. DOI: 10.1007/BF02969299.
  • Rayyan, S.; Fossen, T.; Solheim Nateland, H.; Andersen, O. M. Isolation and Identification of Flavonoids, Including Flavone Rotamers, from the Herbal Drug 'Crataegi Folium Cum Flore' (Hawthorn). Phytochem. Anal. 2005, 16, 334–341. DOI: 10.1002/pca.853.
  • Yoshinari, K.; Shimazaki, N.; Sashida, Y.; Mimaki, Y. Flavanone Xyloside and Lignans from Prunus Jamasakura Bark. Phytochemistry. 1990, 29, 1675–1678. DOI: 10.1016/0031-9422(90)80144-6.
  • Khan, M. K.; Rakotomanomana, N.; Loonis, M.; Dangles, O. Chemical Synthesis of Citrus Flavanone Glucuronides. J. Agric. Food Chem. 2010, 58, 8437–8443. DOI: 10.1021/jf1010403.
  • Ibrahim, A. R.; Galal, A. M.; Ahmed, M. S.; Mossa, G. S. O-Demethylation and Sulfation of 7-Methoxylated Flavanones by Cunninghamella Elegans. Chem. Pharm. Bull. (Tokyo). 2003, 51, 203–206. DOI: 10.1248/cpb.51.203.
  • Yenjai, C.; Wanich, S.; Pitchuanchom, S.; Sripanidkulchai, B. Structural Modification of 5,7-Dimethoxyflavone from Kaempferia Parviflora and Biological Activities. Arch. Pharm. Res. 2009, 32, 1179–1184. DOI: 10.1007/s12272-009-1900-z.
  • Sutthanut, K.; Sripanidkulchai, B.; Yenjai, C.; Jay, M. Simultaneous Identification and Quantitation of 11 Flavonoid Constituents in Kaempferia Parviflora by Gas Chromatography. J. Chromatogr. A. 2007, 1143, 227–233. DOI: 10.1016/j.chroma.2007.01.033.
  • Demarque, D. P.; Crotti, A. E.; Vessecchi, R.; Lopes, J. L.; Lopes, N. P. Fragmentation Reactions Using Electrospray Ionization Mass Spectrometry: An Important Tool for the Structural Elucidation and Characterization of Synthetic and Natural Products. Nat. Prod. Rep. 2016, 33, 432–455. DOI: 10.1039/c5np00073d.
  • Agulló-Chazarra, L.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A.; Micol, V.; Herranz-López, M.; Barrajón-Catalán, E. Sweet Cherry by Products Processed by Green Extraction Techniques as a Source of Bioactive Compounds with Antiaging Properties. Antioxidants. 2020, 9, 418. DOI: 10.3390/antiox9050418.
  • Tomohara, K.; Ito, T.; Onikata, S.; Kato, A.; Adachi, I. Discovery of Hyaluronidase Inhibitors from Natural Products and Their Mechanistic Characterization under DMSO-Perturbed Assay Conditions. Bioorg. Med. Chem. Lett. 2017, 27, 1620–1623. DOI: 10.1016/j.bmcl.2017.01.083.
  • Poonam, V.; Raunak; Kumar, G.; Reddy L, C. S.; Jain, R.; Sharma, S. K.; Prasad, A. K.; Parmar, V. S. Chemical Constituents of the Genus Prunus and Their Medicinal Properties. Curr. Med. Chem. 2011, 18, 3758–3824. DOI: 10.2174/092986711803414386.
  • Matias, A. A.; Rosado-Ramos, R.; Nunes, S. L.; Figueira, I.; Serra, A. T.; Bronze, M. R.; Santos, C. N.; Duarte, C. M. M. Protective Effect of a (Poly)Phenol-Rich Extract Derived from Sweet Cherries Culls against Oxidative Cell Damage. Molecules. 2016, 21, 406. DOI: 10.3390/molecules21040406.
  • Hasegawa, M. Flavanoids of Various Prunus Species. VI. The Flavanoids in the Wood of Prunus Aequinoctialis, P. nipponica, P. maximowiczii, and P. avium. J. Am. Chem. Soc. 1957, 79, 1738–1744. DOI: 10.1021/ja01564a056.
  • Salehi, B.; Fokou, P. V. T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals. 2019, 12, 11. DOI: 10.3390/ph12010011.
  • Nishina, A.; Sato, D.; Yamamoto, J.; Kobayashi-Hattori, K.; Hirai, Y.; Kimura, H. Antidiabetic-like Effects of Naringenin-7-O-glucoside from Edible Chrysanthemum 'Kotobuki' and Naringenin by Activation of the PI3K/Akt Pathway and PPARγ. Chem. Biodivers. 2019, 16, e1800434. DOI: 10.1002/cbdv.201800434.
  • Hou, X.; Du, H.; Yang, R.; Qi, J.; Huang, Y.; Feng, S.; Wu, Y.; Lin, S.; Liu, Z.; Jia, A. Q.; et al. The Antitumor Activity Screening of Chemical Constituents from Camellia Nitidissima Chi. Int. J. Mol. Med. 2018, 41, 2793–2801. DOI: 10.3892/ijmm.2018.3502.
  • Fischer, A.; Sellner, M.; Neranjan, S.; Smieško, M.; Lill, M. A. Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds. IJMS. 2020, 21, 3626. DOI: 10.3390/ijms21103626.
  • Veluri, R.; Weir, T. L.; Bais, H. P.; Stermitz, F. R.; Vivanco, J. M. Phytotoxic and Antimicrobial Activities of Catechin Derivatives. J. Agric. Food Chem. 2004, 52, 1077–1082. DOI: 10.1021/jf030653.
  • Sunil, C.; Xu, B. An Insight into the Health-Promoting Effects of Taxifolin (Dihydroquercetin). Phytochemistry. 2019, 166, 112066. DOI: 10.1016/j.phytochem.2019.112066.
  • Fathima, A.; Rao, J. R. Selective Toxicity of Catechin—A Natural Flavonoid towards Bacteria. Appl. Microbiol. Biotechnol. 2016, 100, 6395–6402. DOI: 10.1007/s00253-016-7492-x.
  • Jeong, K. W.; Lee, J. Y.; Kang, D. I.; Lee, J. U.; Shin, S.; Kim, Y. Screening of Flavonoids as Candidate Antibiotics against Enterococcus faecalis. J. Nat. Prod. 2009, 72, 719–724. DOI: 10.1021/np800698d.
  • Alejo-Armijo, A.; Glibota, N.; Frías, M. P.; Altarejos, J.; Gálvez, A.; Salido, S.; Ortega-Morente, E. Synthesis and Evaluation of Antimicrobial and Antibiofilm Properties of A-Type Procyanidin Analogues against Resistant Bacteria in Food. J. Agric. Food Chem. 2018, 66, 2151–2158. DOI: 10.1021/acs.jafc.8b00535.
  • Veloz, J. J.; Alvear, M.; Salazar, L. A. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. Biomed. Res. Int. 2019, 2019, 7602343. DOI: 10.1155/2019/7602343.
  • Rajendran, N.; Subramaniam, S.; Christena, L. R.; Muthuraman, M. S.; Subramanian, N. S.; Pemiah, B.; Sivasubramanian, A. Antimicrobial Flavonoids Isolated from Indian Medicinal Plant Scutellaria Oblonga Inhibit Biofilms Formed by Common Food Pathogens. Nat. Prod. Res. 2016, 30, 2002–2006. DOI: 10.1080/14786419.2015.1104673.
  • Noumi, E.; Snoussi, M.; Merghni, A.; Nazzaro, F.; Quindós, G.; Akdamar, G.; Mastouri, M.; Al-Sieni, A.; Ceylan, O. Phytochemical Composition, anti-Biofilm and anti-Quorum Sensing Potential of Fruit, Stem and Leaves of Salvadora Persica L. Methanolic Extracts. Microb. Pathog. 2017, 109, 169–176. DOI: 10.1016/j.micpath.2017.05.036.
  • Pizzi, A. Tannin: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M. N., Gandini, A., Eds.; Elsevier: Amsterdam, 2008; pp 179–199. DOI: 10.1016/B978-0-08-045316-3.00008-9.
  • Saïdi, H.; Nasreddine, N.; Jenabian, M. A.; Lecerf, M.; Schols, D.; Krief, C.; Balzarini, J.; Bélec, L. Differential in Vitro Inhibitory Activity against HIV-1 of Alpha-(1-3)- and Alpha-(1-6)-D-Mannose Specific Plant Lectins: Implication for Microbicide Development. J. Transl. Med. 2007, 5, 28. DOI: 10.1186/1479-5876-5-28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.