194
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Water-redispersible cellulose nanocrystals adsorption of glucose via alcohol precipitation

, , , &

References

  • Dai, L.; Wang, Y.; Zou, X. J.; Chen, Z. R.; Liu, H.; Ni, Y. H. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. Small 2020, 16, 1–25. DOI: 10.1002/smll.201906567.
  • Shen, J.; Fatehi, P.; Ni, Y. H. Biopolymers for Surface Engineering of Paper-Based Products. Cellulose 2014, 21, 3145–3160. DOI: 10.1007/s10570-014-0380-6.
  • Song, K. L.; Xu, H. L.; Xu, H. L.; Xu, L.; Xie, K. L.; Yang, Y. Q. Cellulose Nanocrystal-Reinforced Keratin Bioadsorbent for Effective Removal of Dyes from Aqueous Solution. Bioresour. Technol. 2017, 232, 254–262. DOI: 10.1016/j.biortech.2017.01.070.
  • Suopajärvi, T.; Liimatainen, H.; Niinimäki, J. Morphological Analyses of Some Micro- and Nanofibrils from Birch and Wheat Straw Sources. J. Wood Chem. Technol. 2015, 35, 102–112. DOI: 10.1080/02773813.2014.892990.
  • Du, H. S.; Liu, W. M.; Zhang, M. L.; Si, C. L.; Zhang, X. Y.; Li, B. Cellulose Nanocrystals and Cellulose Nanofibrils Based Hydrogels for Biomedical Applications. Carbohydr. Polym. 2019, 209, 130–144. DOI: 10.1016/j.carbpol.2019.01.020.
  • Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in Cellulose Nanomaterials. Cellulose 2018, 25, 2151–2189. DOI: 10.1007/s10570-018-1723-5.
  • Zhang, Y. X.; Kuga, S.; Wu, M.; Huang, Y. Cellulose Nanosheets Formed by Mild Additive-Free Ball Milling. Cellulose 2019, 26, 3143–3153. DOI: 10.1007/s10570-019-02282-7.
  • Déléris, I.; Wallecan, J. Relationship between Processing History and Functionality Recovery after Rehydration of Dried Cellulose-Based Suspensions: A Critical Review. Adv. Colloid Interface Sci. 2017, 246, 1–12. DOI: 10.1016/j.cis.2017.06.013.
  • Eyholzer, C.; Bordeanu, N.; Lopez-Suevos, F.; Rentsch, D.; Zimmermann, T.; Oksman, K. Preparation and Characterization of Water-Redispersible Nanofibrillated Cellulose in Powder Form. Cellulose 2010, 17, 19–30. DOI: 10.1007/s10570-009-9372-3.
  • Hanif, Z.; Jeon, H.; Tran, T. H.; Jegal, J.; Park, S.; Kim, S.; Park, J.; Hwang, S. Y.; Oh, D. X. Butanol-Mediated Oven-Drying of Nanocellulose with Enhanced Dehydration Rate and Aqueous Re-Dispersion. J. Polym. Res. 2018, 25, 191. DOI: 10.1007/s10965-017-1343-z.
  • Dong, X. M.; Gray, D. G. Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites. Langmuir 1997, 13, 2404–2409. DOI: 10.1021/la960724h.
  • Beck, S.; Bouchard, J.; Berry, R. Dispersibility in Water of Dried Nanocrystalline Cellulose. Biomacromolecules 2012, 13, 1486–1494. DOI: 10.1021/bm300191k.
  • Butchosa, N.; Zhou, Q. Water Redispersible Cellulose Nanofibrils Adsorbed with Carboxymethyl Cellulose. Cellulose 2014, 21, 4349–4358. DOI: 10.1007/s10570-014-0452-7.
  • Velásquez-Cock, J.; Gañán, P.; Gómez H, C.; Posada, P.; Castro, C.; Dufresne, A.; Zuluaga, R. Improved Redispersibility of Cellulose Nanfibrils in Water Using Maltodextrin as a Green, Easily Removable and Non-Toxic Additive. Food Hydrocolloid 2018, 79, 30–39. DOI: 10.1016/j.foodhyd.2017.12.024.
  • Iglesias, M. C.; Shivyari, N.; Norris, A.; Martin-Sampedro, R.; Eugenio, M. E.; Lahtinen, P.; Auad, M. L.; Elder, T.; Jiang, Z. H.; Frazier, C. E. Peresin, M. S. The Effect of Residual Lignin on the Rheological Properties of Cellulose Nanofibril Suspensions. J. Wood Chem. Technol. 2020, 40, 1–12. DOI: 10.1080/02773813.2020.1828472.
  • Jiang, F.; Hsieh, Y. L. Assembling and Redispersibility of Rice Straw Nanocellulose: Effect of Tert-Butanol. ACS Appl. Mater. Interfaces 2014, 6, 20075–20084. DOI: 10.1021/am505626a.
  • Castro, N.; Durrieu, V.; Raynaud, C.; Rouilly, A. Influence of DE-Value on the Physicochemical Properties of Maltodextrin for Melt Extrusion Processes. Carbohydr. Polym. 2016, 144, 464–473. DOI: 10.1016/j.carbpol.2016.03.004.
  • Bouchard, J.; Méthot, M.; Fraschini, C.; Beck, S. Effect of Oligosaccharide Deposition on the Surface of Cellulose Nanocrystals as a Function of Acid Hydrolysis Temperature. Cellulose 2016, 23, 3555–3567. DOI: 10.1007/s10570-016-1036-5.
  • Kumar, S.; Gokhale, R.; Burgess, D. J. Sugars as Bulking Agents to Prevent Nano-Crystal Aggregation during Spray or Freeze-Drying. Int. J. Pharm. 2014, 471, 303–311. DOI: 10.1016/j.ijpharm.2014.05.060.
  • Wang, Q. Q.; Zhu, J. Y.; Reiner, R. S.; Verrill, S. P.; Baxa, U.; McNeil, S. E. Approaching Zero Cellulose Loss in Cellulose Nanocrystal (CNC) Production: Recovery and Characterization of Cellulosic Solid Residues (CSR) and CNC. Cellulose 2012, 19, 2033–2047. DOI: 10.1007/s10570-012-9765-6.
  • Cabrera, Y.; Cabrera, A.; Jensen, A.; Felby, C. Purification of Biorefinery Lignin with Alcohols. J. Wood Chem. Technol. 2016, 36, 339–352. DOI: 10.1080/02773813.2016.1148168.
  • Nishiyama, Y.; Kim, U. J.; Kim, D. Y.; Katsumata, K. S.; May, R. P.; Langan, P. Periodic Disorder along Ramie Cellulose Microfibrils. Biomacromolecules 2003, 4, 1013–1017. DOI: 10.1021/bm025772x.
  • Bouchard, J.; Overend, R. P.; Chornet, E.; Calsteren, M. V. Mechanism of Dilute Acid Hydrolysis of Cellulose Accounting for Its Degradation in the Solid State. J. Wood Chem. Technol. 1992, 12, 335–354. DOI: 10.1080/02773819208545239.
  • Zhang, Y. Q.; Xu, Y. J.; Yue, X. P.; Dai, L.; Ni, Y. H. Microcrystalline Cellulose from Bamboo Pulp through Extremely Low Acid Hydrolysis. J. Wood Chem. Technol. 2019, 39, 242–254. DOI: 10.1080/02773813.2019.1566365.
  • Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J. L.; Heux, L.; Dubreuil, F.; Rochas, C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2008, 9, 57–65. DOI: 10.1021/bm700769p.
  • Brito, B.; Pereira, F.; Putaux, J.; Jean, B. Preparation, Morphology and Structure of Cellulose Nanocrystals from Bamboo Fibers. Cellulose 2012, 19, 1527–1536. DOI: 10.1007/s10570-012-9738-9.
  • Zhou, Y. X.; Saito, T.; Bergström, L.; Isogai, A. Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation. Biomacromolecules 2018, 19, 633–639. DOI: 10.1021/acs.biomac.7b01730.
  • Fang, W. W.; Arola, S.; Malho, J. M.; Kontturi, E.; Linder, M. B.; Laaksonen, P. Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides. Biomacromolecules 2016, 17, 1458–1465. DOI: 10.1021/acs.biomac.6b00067.
  • Lorenz, M.; Sattler, S.; Reza, M.; Bismarck, A.; Kontturi, E. Cellulose Nanocrystals by Acid Vapour: Towards More Effortless Isolation of Cellulose Nanocrystals. Faraday Discuss. 2017, 202, 315–330. DOI: 10.1039/c7fd00053g.
  • Babilas, R.; Bajorek, A.; Temleitner, L. Structural Study of Amorphous and Nanocrystalline Mg-Based Metallic Glass Examined by Neutron Diffraction, X-Ray Photoelectron Spectroscopy, Reverse Monte Carlo Calculations and High-Resolution Electron Microscopy. J. Non-Cryst. Solids 2019, 505, 421–430. DOI: 10.1016/j.jnoncrysol.2018.11.025.
  • Zhou, Y.; Ding, E. Y.; Li, W. D. Synthesis of TiO2 Nanocubes Induced by Cellulose Nanocrystal (CNC) at Low Temperature. Mater. Lett. 2007, 61, 5050–5052. DOI: 10.1016/j.matlet.2007.04.001.
  • Xue, B. L.; Wen, J. L.; Xu, F.; Sun, R. C. Structural Characterization of Hemicelluloses Fractionated by Graded Ethanol Precipitation from Pinus yunnanensis. Carbohydr. Res. 2012, 352, 159–165. DOI: 10.1016/j.carres.2012.02.004.
  • Peri, S.; Muthukumar, L.; Karim, M. Z.; Khare, R. Dynamics of Cello-Oligosaccharides on a Cellulose Crystal Surface. Cellulose 2012, 19, 1791–1806. DOI: 10.1007/s10570-012-9771-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.