71
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Semiconductor carbon-nitrogen nanomaterials based on interpolyelectrolyte complex sodium lignosulfonate-chitosan

, , , , , , & show all

References

  • Manjunatha, J. G. A New Electrochemical Sensor based on Modified Carbon Nanotube-Graphite Mixture Paste Electrode for Voltammetric Determination of Resorcinol. Asian J. Pharm. Clin. Res. 2017, 10, 295–300.
  • Komlenok, M. S.; Tikhodeev, S. G.; Weiss, T.; Lebedev, S. P.; Komandin, G. A.; Konov, V. I. All-Carbon Diamond/Graphite Metasurface: Experiment and Modeling. Appl. Phys. Lett. 2018, 113, 041101. DOI: 10.1063/1.5037844.
  • Zhang, L.; Yuan, J.; Su, S.; Cui, Y.; Shi, W.; Zhu, X. Porous Active Carbon Derived from Lotus Stalk as Electrode Material for High-Performance Supercapacitors. J. Wood Chem. Technol. 2021, 41, 46–57. DOI: 10.1080/02773813.2020.1861020.
  • Yuan, J.; Zhu, X.; Lai, L.; Wang, R.; Zhu, J. Preparation and Electrochemical Properties of Nanoscale Porous Carbon Electrode Materials Based on Rice Plant Soot. J. Wood Chem. Technol. 2018, 38, 350–360. DOI: 10.1080/02773813.2018.1500606.
  • Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon Quantum Dots from Natural Resource: A Review. Mater. Today Chem. 2018, 8, 96–109. DOI: 10.1016/j.mtchem.2018.03.003.
  • Ying, T. Y.; Yang, K. L.; Yiacoumi, S.; Tsouris, C. Electrosorption of Ions from Aqueous Solutions by Nanostructured Carbon Aerogel. J. Colloid Interface Sci. 2002, 250, 18–27. DOI: 10.1006/jcis.2002.8314.
  • Ruwoldt, J. A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces 2020, 3, 622–648. DOI: 10.3390/surfaces3040042.
  • Askvik, K. M.; Hetlesether, S.; Sjoblom, J.; Stenius, P. Colloids Surf. A Physicochem. Eng. 2001, 182, 175–189. DOI: 10.1016/S0927-7757(00)00711-1.
  • Brovko, O. S.; Palamarchuk, I. A.; Boitsova, T. A.; Bogolitsyn, K. G.; Valchuk, N. A.; Chukhchin, D. G. Influence of the Conformation of Biopolyelectrolytes on the Morphological Structure of Their Interpolymer Complexes. Macromol. Res. 2015, 23, 1059–1067. DOI: 10.1007/s13233-015-3140-z.
  • Brovko, O. S.; Palamarchuk, I. A.; Boitsova, T. A.; Bogolitsyn, K. G.; Kazakov, Y. V.; Chukhchin, D. G.; Val′chuk, N. A. Deformation and Strength Attributes of Composite Membranes Based on Biopolyelectrolyte Complexes. Fibre Chem. 2015, 47, 265–272. DOI: 10.1007/s10692-016-9677-6.
  • Brovko, O. S.; Val’chuk, N. A.; Boytsova, T. A.; Palamarchuk, I. A.; Bogolitsyn, K. G.; Sysoeva, N. V.; Dubovyy, V. K. Filter Materials Based on Mineral Fibers with Biopolymer Layer. Lesnoi Zhurnal 2017, 1, 186–194. DOI: 10.17238/issn0536-1036.2017.1.186.
  • Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383. DOI: 10.1021/es048729l.
  • Brovko, O.; Palamarchuk, I.; Bogolitsyn, K.; Chukhchin, D.; Ivakhnov, A.; Valchuk, N. Morphological Features of Aerogels and Carbogels Based on Lignosulfonates. Holzforschung 2017, 71, 583–590. DOI: 10.1515/hf-2016-0142.
  • Clancy, A. J.; Bayazit, M. K.; Hodge, S. A.; Skipper, N. T.; Howard, C. A.; Shaffer, M. S. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118, 7363–7408. DOI: 10.1021/acs.chemrev.8b00128.
  • Algharagholy, L. A. Defects in Carbon Nanotubes and Their Impact on the Electronic Transport Properties. J. Electron. Mater. 2019, 48, 2301–2306. DOI: 10.1007/s11664-019-06955-8.
  • Tsukuda, M.; Ishizeki, K.; Takashima, K.; Yamamoto, T. Random Stick Network Analysis of Electronic Transport in Carbon Nanotube Thin Films. Appl. Phys. Express 2019, 12, 055006. DOI: 10.7567/1882-0786/ab0660.
  • Zhang, J.; Liu, G.; Hu, H.; Wu, L.; Wang, Q.; Xin, X.; Li, S.; Lu, P. Graphene-Like Carbon-Nitrogen Materials as Anode Materials for Li-Ion and mg-Ion Batteries. Appl. Surf. Sci. 2019, 487, 1026–1032. DOI: 10.1016/j.apsusc.2019.05.155.
  • Kazmierczak-Razna, J.; Kasprzak, D.; Walkowiak, M.; Pietrzak, R.; Nowicki, P. N-Doped Sawdust-Based Activated Biocarbons Prepared by Microwave-Assisted Heat Treatment as Potential Electrode Materials for Supercapacitors. J. Wood Chem. Technol. 2021, 41, 307–320. DOI: 10.1080/02773813.2021.1990957.
  • Lv, Q.; Si, W.; He, J.; Sun, L.; Zhang, C.; Wang, N.; Li, Y. Selectively Nitrogen-doped Carbon Materials as Superior Metal-free Catalysts for Oxygen Reduction. Nat. Commun. 2018, 9, 1–11.
  • Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; Ischenko, A. V.; Kibis, L. S.; Boronin, A. I.; Chesalov, Y. A.; Kochubey, D. I.; Romanenko, A. I.; Anikeeva, O. B.; et al. Structure and Electrical Conductivity of Nitrogen-Doped Carbon Nanofibers. Carbon 2009, 47, 1922–1929. DOI: 10.1016/j.carbon.2009.02.034.
  • Gopalakrishnan, A.; Badhulika, S. Effect of Self-Doped Heteroatoms on the Performance of Biomass-Derived Carbon for Supercapacitor Applications. J. Power Sources 2020, 480, 228830. DOI: 10.1016/j.jpowsour.2020.228830.
  • Pogodina, N. V.; Pavlov, G. M.; Bushin, S. V.; Mel'nikov, A. B.; Lysenko, Y.; Nud'ga, L. A.; Marsheva, V. N.; Marchenko, G. N.; Tsvetkov, V. N. Conformational Characteristics of Chitosan Molecules as Demonstrated by Diffusion-Sedimentation Analysis and Viscometry. Polym. Sci. USSR 1986, 28, 251–259. DOI: 10.1016/0032-3950(86)90076-6.
  • Raymond, L.; Morin, F. G.; Marchessault, R. H. Degree of Deacetylation of Chitosan Using Conductometric Titration and Solid-State NMR. Carbohydr. Res. 1993, 246, 331–336. DOI: 10.1016/0008-6215(93)84044-7.
  • Brovko, O.; Palamarchuk, I.; Bogdanovich, N.; Ivakhnov, A.; Chukhchin, D.; Malkov, A.; Volkov, A.; Arkhilin, M.; Gorshkova, N. Structure and Electrophysical Properties of Carbogels Based on the Interpolyelectrolyte Complex Lignosulfonate - Chitosan with Various Composition. Microporous Mesoporous Mater. 2019, 282, 211–218. DOI: 10.1016/j.micromeso.2019.03.030.
  • Sokolov, O. M. Measurements of Molecular Masses of Lignins on Ultracentrifuge and by Gel Filtration. Lesotekh. Akad.: Moscow, 1978; p. 78.
  • Brovko, O. S.; Palamarchuk, I. A.; Makarevich, N. A.; Boytsova, T. A. Polymolecular Characteristics of Sodium Lignosulfonate, Chitosan and Polyethylene Polyamine. Chem. Plant Raw Mater. 2009, 1, 29–36.
  • Zakis, G. F. Functional Analysis of Lignins and Their Derivatives. Zinatne: Riga, 1987;p. 230.
  • Valchuk, N. A.; Brovko, O. S.; Palamarchuk, I. A.; Boitsova, T. A.; Bogolitsyn, K. G.; Ivakhnov, A. D.; Chukhchin, D. G.; Bogdanovich, N. I. Preparation of Aerogel Materials Based on Alginate–Chitosan Interpolymer Complex Using Supercritical Fluids. Russ. J. Phys. Chem. B 2019, 13, 1121–1124. DOI: 10.1134/S1990793119070224.
  • Chukhchin, D. G.; Malkov, A. V.; Tyshkunova, I. V.; Mayer, L. V.; Novozhilov, E. V. Diffractometric Method for Determining the Degree of Crystallinity of Materials. Crystallogr. Rep. 2016, 61, 371–375. DOI: 10.1134/S1063774516030081.
  • Gorshkova, N.; Brovko, O.; Palamarchuk, I.; Bogolitsyn, K.; Bogdanovich, N.; Ivakhnov, A.; Chukhchin, D.; Arkhilin, M. Formation of Supramolecular Structure in Alginate/Chitosan Aerogel Materials during Sol-Gel Synthesis. J. Sol-Gel Sci. Technol. 2020, 95, 101–108. DOI: 10.1007/s10971-020-05309-9.
  • Kremer, F. Dielectric Spectroscopy – Yesterday, Today and Tomorrow. J. Non-Cryst. Solids 2002, 305, 1–9. DOI: 10.1016/S0022-3093(02)01083-9.
  • Blythe, T.; Bloor, D. Cambridge University Press: Cambridge, 2005; p. 480.
  • Hong, N.; Qiu, X. Structure-Adsorption Behavior-Dispersion Property Relationship of Alkyl Chain Cross-Linked Lignosulfonate with Different Molecular Weights. ACS Omega. 2020, 5, 4836–4843. DOI: 10.1021/acsomega.9b03535.
  • Brovko, O.; Palamarchuk, I.; Bogdanovich, N.; Ivakhnov, A.; Chukhchin, D.; Belousova, M.; Arkhilin, M.; Gorshkova, N. Composite Aerogel Materials Based on Lignosulfonates and Silica: Synthesis, Structure, Properties. Mater. Chem. Phys. 2021, 269, 124768. DOI: 10.1016/j.matchemphys.2021.124768.
  • Brovko, O. S.; Palamarchuk, I. A.; Gorshkova, N. A.; Ivakhnov, A. D. Metal-Carbon Composites Based on Lignosulfonates. Lesnoy Zhurnal-Forestry J. 2020, 3, 159–168. DOI: 10.37482/0536-1036-2020-3-159-168.
  • Brovko, O.; Palamarchuk, I.; Bogolitsyn, K.; Bogdanovich, N.; Ivakhnov, A.; Chukhchin, D.; Khviuzova, K.; Valchuk, N. Carbon Nanomaterials Based on Interpolyelectrolyte Complex Lignosulfonate-Chitosan. Holzforschung 2019, 73, 181–187. DOI: 10.1515/hf-2017-0221.
  • Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Fullerenes. J. Mater. Res. 1993, 8, 2054–2058. DOI: 10.1557/JMR.1993.2054.
  • Rodriguez-Reinoso, F. The Role of Carbon Materials in Heterogeneous Catalysis. Carbon 1998, 3, 159–175.
  • Bellamy, L. J. The Infra-red Spectra of Complex Molecules. Methuen & Co Ltd.: London, 1971; p. 318.
  • Xu, X.; Zhang, S.; Tang, J.; Pan, L.; Eguchi, M.; Na, J.; Yamauchi, Y. Nitrogen-Doped Nanostructured Carbons: A New Material Horizon for Water Desalination by Capacitive Deionization. EnergyChem 2020, 2, 100043. DOI: 10.1016/j.enchem.2020.100043.
  • Tomita, S.; Burian, A.; Dore, J. C.; LeBolloch, D.; Fujii, M.; Hayashi, S. Diamond Nanoparticles to Carbon Onions Transformation: X-Ray Diffraction Studies. Carbon 2002, 40, 1469–1474. DOI: 10.1016/S0008-6223(01)00311-6.
  • Yastrebov, S. G.; Ivanov-Omskii, V. I. Allotropic Composition of Amorphous Carbon. Semiconductors. 2007, 41, 946–952.
  • Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-Doped Carbon Materials. Carbon 2018, 132, 104–140. DOI: 10.1016/j.carbon.2018.02.024.
  • Czigani, Z.; Brunell, I.F. Growth of Fullerene-like Carbon Nitride Thin Solid Films Consisting of Cross-linked Nano-Onions. Appl. Phys. Lett. 2001, 79, 2639–2641.
  • Gregg, S. J.; Sing, K. S. W. Auflage; Academic Press: London, 1982; p. 303.
  • Jonscher, A. K. The ‘Universal’ Dielectric Response. Nature 1977, 267, 673–679. DOI: 10.1038/267673a0.
  • Ladhar, A.; Arous, M.; Kaddami, H.; Raihane, M.; Kallel, A.; Graça, M. P. F.; Costa, L. C. AC and DC Electrical Conductivity in Natural Rubber/Nanofibrillated Cellulose Nanocomposites. J. Mol. Liq. 2015, 209, 272–279. DOI: 10.1016/j.molliq.2015.04.020.
  • Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon Onions for Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 3172–3196. DOI: 10.1039/C5TA08295A.
  • Volkov, A. S. Determination of the Dispersion Parameters of the Havriliak-Negami Model using Computer Analysis in Multi-Relaxation Processes. Phys. Bull. Higher School Nat. Sci. Technol. NARFU 2020, 20, 45–57.
  • Panda, R. K.; Behera, D. Investigation of Electric Transport Behavior of Bulk CoFe2O4 by Complex Impedance Spectroscopy. J. Alloys Compd. 2014, 587, 481–486. DOI: 10.1016/j.jallcom.2013.10.195.
  • Bogdanov, A. A. Processes of Aggregation of Fullerene C60 in Polymer–Fullerene Composites. Phys. Solid State 2020, 62, 354–358. DOI: 10.1134/S1063783420020079.
  • Dhahri, A.; Dhahri, E.; Hlil, E. K. Electrical Conductivity and Dielectric Behaviour of Nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 2018, 8, 9103–9111. DOI: 10.1039/c8ra00037a.
  • Pintschovius, L.; Chaplot, S. L.; Roth, G.; Heger, G. Evidence for a Pronounced Local Orientational Order in the High Temperature Phase of C60. Phys. Rev. Lett. 1995, 75, 2843–2846. DOI: 10.1103/PhysRevLett.75.2843.
  • Dowland, S. A.; Salvador, M.; Perea, J. D.; Gasparini, N.; Langner, S.; Rajoelson, S.; Ramanitra, H. H.; Lindner, B. D.; Osvet, A.; Brabec, C. J.; et al. Suppression of Thermally Induced Fullerene Aggregation in Polyfullerene-Based Multiacceptor Organic Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 10971–10982. DOI: 10.1021/acsami.7b00401.
  • Singh, A.; Chatterjee, R.; Mishra, S. K.; Krishna, P. S. R.; Chaplot, S. L. Origin of Large Dielectric Constant in La Modified BiFeO3-PbTiO3 Multiferroic. J. Appl. Phys. 2012, 111, 014113. DOI: 10.1063/1.3675279.
  • Chigvinadze, J.; Buntar, V.; Ashimov, S.; Machaidze, T.; Donadze, G. Unusual Magnetic Phenomena in Dynamic Torsion Studies of Fullerene Rb3C60. Low Temp. Phys. 2020, 46, 195–206. DOI: 10.1063/10.0000541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.