272
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Valorization of paper mill sludge using protic ionic liquids and deep eutectic solvents as a potential feedstock for biorefineries

ORCID Icon, , &

References

  • Ezeudu, O. B.; Agunwamba, J. C.; Ezeasor, I. C.; Madu, C. N. Sustainable Production and Consumption of Paper and Paper Products in Nigeria: A Review. Resources 2019, 8, 53. DOI: 10.3390/resources8010053.
  • Shang, D.; Diao, G.; Liu, C.; Yu, L. The Impact of Waste Paper Recycling on the Carbon Emissions from China's Paper Industry. Environ. Manage. 2021, 67, 811–821. DOI: 10.1007/s00267-020-01417-y.
  • Mobarakeh, M. R.; Silva, M. S.; Kienberger, T. Pulp and Paper Industry: Decarbonisation Technology Assessment to Reach CO2 Neutral Emissions—An Austrian Case Study. Energies 2021, 14, 1161. DOI: 10.3390/en14041161.
  • Thompson, G.; Swain, J.; Kay, M.; Forster, C. F. The Treatment of Pulp and Paper Mill Effluent: A Review. Bioresour. Technol. 2001, 77, 275–286. DOI: 10.1016/S0960-8524(00)00060-2.
  • de Alda, J. A. G. O. Feasibility of Recycling Pulp and Paper Mill Sludge in the Paper and Board Industries. Resour. Conservation Recycl. 2008, 52, 965–972. DOI: 10.1016/j.resconrec.2008.02.005.
  • Coimbra, R. N.; Paniagua, S.; Escapa, C.; Calvo, L. F.; Otero, M. Combustion of Primary and Secondary Pulp Mill Sludge and Their Respective Blends with Coal: A Thermogravimetric Assessment. Renew. Energy 2015, 83, 1050–1058. DOI: 10.1016/j.renene.2015.05.046.
  • Veluchamy, C.; Kalamdhad, A. S. Influence of Pretreatment Techniques on Anaerobic Digestion of Pulp and Paper Mill Sludge: A Review. Bioresour. Technol. 2017, 245, 1206–1219. DOI: 10.1016/j.biortech.2017.08.179.
  • Naicker, J. E.; Govinden, R.; Lekha, P.; Sithole, B. Transformation of Pulp and Paper Mill Sludge (PPMS) into a Glucose-Rich Hydrolysate Using Green Chemistry: Assessing Pretreatment Methods for Enhanced Hydrolysis. J. Environ. Manage. 2020, 270, 110914. DOI: 10.1016/j.jenvman.2020.110914.
  • Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C. Pulp and Paper Mill Sludge Management Practices: What Are the Challenges to Assess the Impacts on Greenhouse Gas Emissions? Resour. Conservation Recycl. 2016, 108, 107–133. DOI: 10.1016/j.resconrec.2016.01.007.
  • Méndez, A.; Fidalgo, J. M.; Guerrero, F.; Gascó, G. Characterization and Pyrolysis Behaviour of Different Paper Mill Waste Materials. J. Anal. Appl. Pyrol. 2009, 86, 66–73. DOI: 10.1016/j.jaap.2009.04.004.
  • Azevedo, ARGd.; Alexandre, J.; Pessanha, L. S. P.; Manhães, RdST.; Brito, J. d.; Marvila, M. T. Characterizing the Paper Industry Sludge for Environmentally-Safe Disposal. Waste Manage. 2019, 95, 43–52. DOI: 10.1016/j.wasman.2019.06.001.
  • Duncan, S. M.; Alkasrawi, M.; Gurram, R.; Almomani, F.; Wiberley-Bradford, A. E.; Singsaas, E. Paper Mill Sludge as a Source of Sugars for Use in the Production of Bioethanol and Isoprene. Energies 2020, 13, 4662. DOI: 10.3390/en13184662.
  • Lin, Y.; Liang, J.; Zeng, C.; Wang, D.; Lin, H. Anaerobic Digestion of Pulp and Paper Mill Sludge Pretreated by Microbial Consortium OEM1 with Simultaneous Degradation of Lignocellulose and Chlorophenols. Renew. Energy 2017, 108, 108–115. DOI: 10.1016/j.renene.2017.02.049.
  • Moreau, A.; Montplaisir, D.; Sparling, R.; Barnabé, S. Hydrogen, Ethanol and Cellulase Production from Pulp and Paper Primary Sludge by Fermentation with Clostridium thermocellum. Biomass Bioenergy 2015, 72, 256–262. DOI: 10.1016/j.biombioe.2014.10.028.
  • Kang, L.; Wang, W.; Lee, Y. Y. Bioconversion of Kraft Paper Mill Sludges to Ethanol by SSF and SSCF. Appl .Biochem. Biotechnol. 2010, 161, 53–66. DOI: 10.1007/s12010-009-8893-4.
  • Guan, W.; Shi, S.; Tu, M.; Lee, Y. Y. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation. Bioresour. Technol. 2016, 200, 713–721. DOI: 10.1016/j.biortech.2015.10.102.
  • Lou, R.; Wu, S.; Lv, G.; Yang, Q. Energy and Resource Utilization of Deinking Sludge Pyrolysis. Appl. Energy 2012, 90, 46–50. DOI: 10.1016/j.apenergy.2010.12.025.
  • Oumabady, S.; S, P. S.; Kamaludeen, S. P. B.; Ramasamy, M.; Kalaiselvi, P.; Parameswari, E. Preparation and Characterization of Optimized Hydrochar from Paper Board Mill Sludge. Sci. Rep. 2020, 10, 773. DOI: 10.1038/s41598-019-57163-7.
  • Areeprasert, C.; Zhao, P.; Ma, D.; Shen, Y.; Yoshikawa, K. Alternative Solid Fuel Production from Paper Sludge Employing Hydrothermal Treatment. Energy Fuels 2014, 28, 1198–1206. DOI: 10.1021/ef402371h.
  • Glińska, K.; Lerigoleur, C.; Giralt, J.; Torrens, E.; Bengoa, C. Valorization of Cellulose Recovered from WWTP Sludge to Added Value Levulinic Acid with a Brønsted Acidic Ionic Liquid. Catalysts 2020, 10, 1004. DOI: 10.3390/catal10091004.
  • Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K. K.; Wolcott, M.; Zhang, X. Unique Low-Molecular-Weight Lignin with High Purity Extracted from Wood by Deep Eutectic Solvents (DES): a Source of Lignin for Valorization. Green Chem. 2016, 18, 5133–5141. DOI: 10.1039/C6GC01007E.
  • Lynam, J. G.; Kumar, N.; Wong, M. J. Deep Eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 2017, 238, 684–689. DOI: 10.1016/j.biortech.2017.04.079.
  • Verdía, P.; Brandt, A.; Hallett, J. P.; Ray, M. J.; Welton, T. Fractionation of Lignocellulosic Biomass with the Ionic Liquid 1-Butylimidazolium Hydrogen Sulfate. Green Chem. 2014, 16, 1617. DOI: 10.1039/c3gc41742e.
  • George, A.; Brandt, A.; Tran, K.; Zahari, S. M. S. N. S.; Klein-Marcuschamer, D.; Sun, N.; Sathitsuksanoh, N.; Shi, J.; Stavila, V.; Parthasarathi, R.; et al. Design of Low-Cost Ionic Liquids for Lignocellulosic Biomass Pretreatment. Green Chem. 2015, 17, 1728–1734. DOI: 10.1039/C4GC01208A.
  • Kohli, K.; Katuwal, S.; Biswas, A.; Sharma, B. K. Effective Delignification of Lignocellulosic Biomass by Microwave Assisted Deep Eutectic Solvents. Bioresour. Technol. 2020, 303, 122897. DOI: 10.1016/j.biortech.2020.122897.
  • Penín, L.; Santos, V.; Parajó, J. C. Delignification of Autohydrolyzed Wood in Media Containing Water and a Protic Ionic Liquid. J. Wood Chem. Technol. 2020, 40, 1–13. DOI: 10.1080/02773813.2020.1746808.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. DOI: 10.1021/ja048266j.
  • Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. DOI: 10.1021/cr068040u.
  • Zhang, C.-W.; Xia, S.-Q.; Ma, P.-S. Facile Pretreatment of Lignocellulosic Biomass Using Deep Eutectic Solvents. Bioresour. Technol. 2016, 219, 1–5. DOI: 10.1016/j.biortech.2016.07.026.
  • Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. DOI: 10.1016/j.molliq.2019.111301.
  • Rauf, A.; Shafeeq, A.; Shahzad, K. Delignification of Corn Straw Using the Ionic Liquid Triethylammonium Hydrogen Sulfate. Chem. Eng. Technol. 2022, DOI: 10.1002/ceat.202100520.
  • Semerci, I.; Güler, F. Protic Ionic Liquids as Effective Agents for Pretreatment of Cotton Stalks at High Biomass Loading. Ind. Crop Prod. 2018, 125, 588–595. DOI: 10.1016/j.indcrop.2018.09.046.
  • Haykir, N. I.; Soysal, K.; Yaglikci, S.; Gokce, Y. Assessing the Effect of Protic Ionic Liquid Pretreatment of Pinus Radiata from Different Perspectives Including Solvent-Water Ratio. J. Wood Chem. Technol. 2021, 41, 236–248. DOI: 10.1080/02773813.2021.1976797.
  • Gschwend, F. J. V.; Malaret, F.; Shinde, S.; Brandt-Talbot, A.; Hallett, J. P. Rapid Pretreatment of Miscanthus Using the Low-Cost Ionic Liquid Triethylammonium Hydrogen Sulfate at Elevated Temperatures. Green Chem. 2018, 20, 3486–3498. DOI: 10.1039/C8GC00837J.
  • Nakasu, P. Y. S.; Clarke, C. J.; Rabelo, S. C.; Costa, A. C.; Brandt-Talbot, A.; Hallett, J. P. Interplay of Acid–Base Ratio and Recycling on the Pretreatment Performance of the Protic Ionic Liquid Monoethanolammonium Acetate. ACS Sustainable Chem. Eng. 2020, 8, 7952–7961. DOI: 10.1021/acssuschemeng.0c01311.
  • Abouelela, A. R.; Ghatta, A. A.; Verdía, P.; Koo, M. S.; Lemus, J.; Hallett, J. P. Evaluating the Role of Water as a Cosolvent and an Antisolvent in [HSO4]-Based Protic Ionic Liquid Pretreatment. ACS Sustainable Chem. Eng. 2021, 9, 10524–10536. DOI: 10.1021/acssuschemeng.1c02299.
  • Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. In Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, CO, 2008.
  • Ghose, T. K. Measurement of Cellulase Activities. Pure Appl. Chem. 1987, 59, 257–268. DOI: 10.1351/pac198759020257.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. DOI: 10.1186/1754-6834-3-10.
  • Brandt-Talbot, A.; Gschwend, F. J. V.; Fennell, P. S.; Lammens, T. M.; Tan, B.; Weale, J.; Hallett, J. P. An Economically Viable Ionic Liquid for the Fractionation of Lignocellulosic Biomass. Green Chem. 2017, 19, 3078–3102. DOI: 10.1039/C7GC00705A.
  • Farghaly, A.; Elsamadony, M.; Ookawara, S.; Tawfik, A. Bioethanol Production from Paperboard Mill Sludge Using Acid-Catalyzed Bio-Derived Choline Acetate Ionic Liquid Pretreatment Followed by Fermentation Process. Energy Convers. Manage. 2017, 145, 255–264. DOI: 10.1016/j.enconman.2017.05.004.
  • Glińska, K.; Ismail, M. S. B.; Goma-Camps, J.; Valencia, P.; Stüber, F.; Giralt, J.; Fabregat, A.; Torrens, E.; Olkiewicz, M.; Bengoa, C. Recovery and Characterisation of Cellulose from Industrial Paper Mill Sludge Using Tetrakis and Imidazolium Based Ionic Liquids. Ind. Crop Prod. 2019, 139, 111556. DOI: 10.1016/j.indcrop.2019.111556.
  • Ichiura, H.; Nakatani, T.; Ohtani, Y. Separation of Pulp and Inorganic Materials from Paper Sludge Using Ionic Liquid and Centrifugation. Chem. Eng. J. 2011, 173, 129–134. DOI: 10.1016/j.cej.2011.07.048.
  • Holm, J.; Lassi, U.; Romar, H.; Lahti, R.; Kärkkäinen, J.; Lajunen, M. Pretreatment of Fibre Sludge in Ionic Liquids Followed by Enzyme and Acid Catalysed Hydrolysis. Catal. Today 2012, 196, 11–15. DOI: 10.1016/j.cattod.2012.04.001.
  • Lukmandaru, G. Chemical Characteristics of Teak Wood Attacked by Neotermes Tectonae. Bioresources 2015, 10, 2094–2102. DOI: 10.15376/biores.10.2.2094-2102.
  • Draude, K. M.; Kurniawan, C. B.; Duff, S. J. B. Effect of Oxygen Delignification on the Rate and Extent of Enzymatic Hydrolysis of Lignocellulosic Material. Bioresour. Technol. 2001, 79, 113–120. DOI: 10.1016/S0960-8524(01)00055-4.
  • Gurram, R. N.; Al-Shannag, M.; Lecher, N. J.; Duncan, S. M.; Singsaas, E. L.; Alkasrawi, M. Bioconversion of Paper Mill Sludge to Bioethanol in the Presence of Accelerants or Hydrogen Peroxide Pretreatment. Bioresour. Technol. 2015, 192, 529–539. DOI: 10.1016/j.biortech.2015.06.010.
  • Tawalbeh, M.; Rajangam, A. S.; Salameh, T.; Al-Othman, A.; Alkasrawi, M. Characterization of Paper Mill Sludge as a Renewable Feedstock for Sustainable Hydrogen and Biofuels Production. Int. J. Hydrogen Energy 2021, 46, 4761–4775. DOI: 10.1016/j.ijhydene.2020.02.166.
  • Singh, S.; Sithole, B.; Lekha, P.; Permaul, K.; Govinden, R. Pretreatment and Enzymatic Saccharification of Sludge from a Prehydrolysis Kraft and Kraft Pulping Mill. J. Wood Chem. Technol. 2021, 41, 10–16. DOI: 10.1080/02773813.2020.1856880.
  • Yao, J. G.; Tan, S.; Metcalfe, P. I.; Fennell, P. S.; Kelsall, G. H.; Hallett, J. P. Demetallization of Sewage Sludge Using Low-Cost Ionic Liquids. Environ. Sci. Technol. 2021, 55, 5291–5300. DOI: 10.1021/acs.est.0c03724.
  • Abouelela, A. R.; Tan, S.; Kelsall, G. H.; Hallett, J. P. Toward a Circular Economy: Decontamination and Valorization of Postconsumer Waste Wood Using the IonoSolv Process. ACS Sustainable Chem. Eng. 2020, 8, 14441–14461. DOI: 10.1021/acssuschemeng.0c04365.
  • Bansal, P.; Hall, M.; Realff, M. J.; Lee, J. H.; Bommarius, A. S. Multivariate Statistical Analysis of X-Ray Data from Cellulose: A New Method to Determine Degree of Crystallinity and Predict Hydrolysis Rates. Bioresour. Technol. 2010, 101, 4461–4471. DOI: 10.1016/j.biortech.2010.01.068.
  • Gong, J.; Li, J.; Xu, J.; Xiang, Z.; Mo, L. Research on Cellulose Nanocrystals Produced from Cellulose Sources with Various Polymorphs. RSC Adv. 2017, 7, 33486–33493. DOI: 10.1039/C7RA06222B.
  • Oh, S. Y.; Yoo, D. I.; Shin, Y.; Kim, H. C.; Kim, H. Y.; Chung, Y. S.; Park, W. H.; Youk, J. H. Crystalline Structure Analysis of cellulose treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. DOI: 10.1016/j.carres.2005.08.007.
  • Zhou, H.; Long, Y.; Meng, A.; Chen, S.; Li, Q.; Zhang, Y. A Novel Method for Kinetics Analysis of Pyrolysis of Hemicellulose, Cellulose, and Lignin in TGA and Macro-TGA. RSC Adv 2015, 5, 26509–26516. DOI: 10.1039/C5RA02715B.
  • Fang, S.; Yu, Z.; Lin, Y.; Hu, S.; Liao, Y.; Ma, X. Thermogravimetric Analysis of the Co-Pyrolysis of Paper Sludge and Municipal Solid Waste. Energy Convers. Manage. 2015, 101, 626–631. DOI: 10.1016/j.enconman.2015.06.026.
  • He, S.; Bijl, A.; Rohrbach, L.; Yuan, Q.; Santosa, D. S.; Wang, Z.; Heeres, H. J.; Brem, G. Catalytic Upcycling Paper Sludge for the Recovery of Minerals and Production of Renewable High-Grade Biofuels and Bio-Based Chemicals. Chem. Eng. J. 2021, 420, 129714. DOI: 10.1016/j.cej.2021.129714.
  • Zambare, V. P.; Christopher, L. P. Integrated Biorefinery Approach to Utilization of Pulp and Paper Mill Sludge for Value-Added Products. J. Clean Prod. 2020, 274, 122791. DOI: 10.1016/j.jclepro.2020.122791.
  • Alkasrawi, M.; Al-Othman, A.; Tawalbeh, M.; Doncan, S.; Gurram, R.; Singsaas, E.; Almomani, F.; Al-Asheh, S. A Novel Technique of Paper Mill Sludge Conversion to Bioethanol toward Sustainable Energy Production: Effect of Fiber Recovery on the Saccharification Hydrolysis and Fermentation. Energy 2021, 223, 120018. DOI: 10.1016/j.energy.2021.120018.
  • Bayr, S.; Kaparaju, P.; Rintala, J. Screening Pretreatment Methods to Enhance Thermophilic Anaerobic Digestion of Pulp and Paper Mill Wastewater Treatment Secondary Sludge. Chem. Eng. J. 2013, 223, 479–486. DOI: 10.1016/j.cej.2013.02.119.
  • Liu, S.; Duncan, S.; Qureshi, N.; Rich, J. Fermentative Production of Butyric Acid from Paper Mill Sludge Hydrolysates Using Clostridium Tyrobutyricum NRRL B-67062/RPT 4213. Biocatal. Agric. Biotechnol. 2018, 14, 48–51. DOI: 10.1016/j.bcab.2018.02.002.
  • Confederation of European Paper Industries (CEPI). https://www.cepi.org/growing-demand-for-packaging-and-hygiene-papers-while-covid-19-impacts-overall-561/paper-and-board-consumption/, 2021 (accessed 20 January 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.