267
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

A methodological approach to ε-caprolactone modification of wood

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W.; Hu, L. Wood-Based Nanotechnologies toward Sustainability. Adv. Mater 2018, 30, 1703453. DOI: 10.1002/adma.201703453.
  • Miyagawa, H.; Mohanty, A. K.; Burgueño, R.; Drzal, L. T.; Misra, M. Novel Biobased Resins from Blends of Functionalized Soybean Oil and Unsaturated Polyester Resin. J. Polym. Sci. B Polym. Phys 2007, 45, 698–704. DOI: 10.1002/polb.21059.
  • Petersen, K.; Nielsen, P. v.; Olsen, M. B. Physical and Mechanical Properties of Biobased Materials - Starch, Polylactate and Polyhydroxybutyrate. Starch/Stärke 2001, 53, 356–361. DOI: 10.1002/1521-379X(200108)53:8<356::AID-STAR356>3.0.CO;2-7.
  • Rai, R.; Keshavarz, T.; Roether, J. A.; Boccaccini, A. R.; Roy, I. Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Materials for the Future. Materials Science and Engineering: R: Reports 2011, 72, 29–47. DOI: 10.1016/j.mser.2010.11.002.
  • Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M. K. A Review of the Environmental Impacts of Biobased Materials. J. Ind. Ecol. 2012, 16, S169–S181. DOI: 10.1111/j.1530-9290.2012.00468.x.
  • Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Verlag Kessel: Remagen-Oberwinter, 2003.
  • Rowell, R. M. Chemical Modification of Wood. In Handbook of Wood Chemistry and Composites; Rowell, R. M., Ed.; CRC Press: Boca Raton, FL, 2012; p 62. 10.3139/9783446442504.022.
  • Hill, C. A. S. Wood Modification: Chemical, Thermal and Other Processes. Wiley Series in Renewabl. In Wiley Series in Renewable Resources; John Wiley & Sons: Hoboken, NJ, 2006; p 239.
  • Sathre, R.; Gustavsson, L. Energy and Carbon Balances of Wood Cascade Chains. Resour. Conserv. Recycl. 2006, 47, 332–355. DOI: 10.1016/j.resconrec.2005.12.008.
  • Rowell, R. Handbook of Wood Chemistry and Wood Composites, 2nd Ed.; Taylor & Francis: London, UK, 2012. DOI: 10.1201/b12487.
  • Vasic, S.; Stanzl-Tschegg, S. Experimental and Numerical Investigation of Wood Fracture Mechanisms at Different Humidity Levels. Holzforschung 2007, 61, 367–374. DOI: 10.1515/HF.2007.056.
  • Rowell, R. M.; Banks, W. B. Water Repellency and Dimensional Stability of Wood; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 1985. DOI: 10.2737/FPL-GTR-50.
  • Rowell, R. M. Chemical Modification of Wood: A Short Review. Wood Material Science & Engineering 2006, 1, 29–33. DOI: 10.1080/17480270600670923.
  • Hon, D. N.-S. Chemical Modification of Lignocellulosic Materials; Hon, D. N.-S., Ed.; Routledge: New York, NY, 1996. DOI: 10.1201/9781315139142.
  • Kumar, S. Chemical Modification of Wood. Wood Fiber Sci. 1994, 26, 270–280.
  • Rowell, R. M. Chemical Modification of Wood. In Handbook of Engineering Biopolymers; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2007; pp 673–691DOI: 10.3139/9783446442504.022.
  • Homan, W. J.; Jorissen, A. J. M. Wood Modification Developments. Heron 2004, 49, 361–386.
  • Li, J.-Z.; Furuno, T.; Katoh, S.; Uehara, T. Chemical Modification of Wood by Anhydrides without Solvents or Catalysts. J. Wood Sci. 2000, 46, 215–221. DOI: 10.1007/BF00776452.
  • Çetin, N. S.; Özmen, N.; Tingaut, P.; Sèbe, G. New Transesterification Reaction between Acetylated Wood and Tetramethoxysilane: A Feasibility Study. Eur. Polym. J. 2005, 41, 2704–2710. DOI: 10.1016/j.eurpolymj.2005.05.028.
  • Nordstierna, L.; Lande, S.; Westin, M.; Karlsson, O.; Furó, I. Towards Novel Wood-Based Materials: Chemical Bonds between Lignin-like Model Molecules and Poly(Furfuryl Alcohol) Studied by NMR. Holzforschung 2008, 62, 110. DOI: 10.1515/HF.2008.110.
  • Cabane, E.; Keplinger, T.; Künniger, T.; Merk, V.; Burgert, I. Functional Lignocellulosic Materials Prepared by ATRP from a Wood Scaffold. Sci. Rep. 2016, 6, 31287. DOI: 10.1038/srep31287.
  • Keplinger, T.; Cabane, E.; Chanana, M.; Hass, P.; Merk, V.; Gierlinger, N.; Burgert, I. A Versatile Strategy for Grafting Polymers to Wood Cell Walls. Acta Biomater. 2015, 11, 256–263. DOI: 10.1016/j.actbio.2014.09.016.
  • Vidiella Del Blanco, M.; Gomez, V.; Keplinger, T.; Cabane, E.; Morales, L. F. G. Solvent-Controlled Spatial Distribution of SI-AGET-ATRP Grafted Polymers in Lignocellulosic Materials. Biomacromolecules 2019, 20, 336–346. DOI: 10.1021/acs.biomac.8b01393.
  • Olaniran, S. O.; Michen, B.; Mora Mendez, D. F.; Wittel, F. K.; Bachtiar, E. V.; Burgert, I.; Rüggeberg, M. Mechanical Behaviour of Chemically Modified Norway Spruce (Picea Abies L. Karst.): Experimental Mechanical Studies on Spruce Wood after Methacrylation and in Situ Polymerization of Styrene. Wood Sci. Technol. 2019, 53, 425–445. DOI: 10.1007/s00226-019-01080-5.
  • Ermeydan, M. A.; Cabane, E.; Gierlinger, N.; Koetz, J.; Burgert, I. Improvement of Wood Material Properties via in Situ Polymerization of Styrene into Tosylated Cell Walls. RSC Adv. 2014, 4, 12981. DOI: 10.1039/c4ra00741g.
  • Ermeydan, M. A.; Babacan, M.; Tomak, E. D. Evaluation of Dimensional Stability, Weathering and Decay Resistance of Modified Pine Wood by In-Situ Polymerization of Styrene. J. Wood Chem. Technol. 2020, 40, 294–305. DOI: 10.1080/02773813.2020.1786127.
  • Dong, Y.; Altgen, M.; Mäkelä, M.; Rautkari, L.; Hughes, M.; Li, J.; Zhang, S. Improvement of Interfacial Interaction in Impregnated Wood via Grafting Methyl Methacrylate onto Wood Cell Walls. Holzforschung 2020, 74, 0,967–977. DOI: 10.1515/hf-2019-0144.
  • Ermeydan, M. A.; Cabane, E.; Hass, P.; Koetz, J.; Burgert, I. Burgert, I. Fully Biodegradable Modification of Wood for Improvement of Dimensional Stability and Water Absorption Properties by Poly(ε-Caprolactone) Grafting into the Cell Walls. Green Chem 2014, 16, 3313–3321. DOI: 10.1039/c4gc00194j.
  • Albertsson, A.-C.; Varma, I. K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003, 4, 1466–1486. DOI: 10.1021/bm034247a.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer - Polycaprolactone in the 21st Century. Progress Polym. Sci. (Oxford) 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Abdel-Motaal, F. F.; El-Sayed, M. A.; El-Zayat, S. A.; Ito, S. Biodegradation of Poly (ε-Caprolactone) (PCL) Film and Foam Plastic by Pseudozyma Japonica Sp. Nov., a Novel Cutinolytic Ustilaginomycetous Yeast Species. 3 Biotech 2014, 4, 507–512. DOI: 10.1007/s13205-013-0182-9.
  • Abdollahi, M.; Bairami Habashi, R.; Mohsenpour, M. Poly(ε-Caprolactone) Chains Grafted from Lignin, Hydroxymethylated Lignin and Silica/Lignin Hybrid Macroinitiators: Synthesis and Characterization of Lignin- Based Thermoplastic Copolymers. Ind. Crops Prod. 2019, 130, 547–557. DOI: 10.1016/j.indcrop.2019.01.012.
  • Olsén, P.; Herrera, N.; Berglund, L. A. Polymer Grafting inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling. Biomacromolecules 2020, 21, 597–603. DOI: 10.1021/acs.biomac.9b01333.
  • Ermeydan, M. A.; Kartal, Z. N.; Tomak, E. D. Effect of Process Variations of Polycaprolactone Modification on Wood Durability, Dimensional Stability and Boron Leaching. Holzforschung 2019, 73, 847–858. DOI: 10.1515/hf-2018-0231.
  • Rowell, R. M.; Ellis, W. D. Determination of Dimensional Stabilization of Wood Using the Water-Soak Method. Wood and Fiber 1978, 10, 104–111.
  • Storey, R. F.; Sherman, J. W. Kinetics and Mechanism of the Stannous Octoate-Catalyzed Bulk Polymerization of ε-Caprolactone. Macromolecules 2002, 35, 1504–1512. DOI: 10.1021/ma010986c.
  • Wiltshire, J. T.; Qiao, G. G. Degradable Core Cross-Linked Star Polymers via Ring-Opening Polymerization. Macromolecules 2006, 39, 4282–4285. DOI: 10.1021/ma060712v.
  • Labet, M.; Thielemans, W. Improving the Reproducibility of Chemical Reactions on the Surface of Cellulose Nanocrystals: ROP of ε-Caprolactone as a Case Study. Cellulose 2011, 18, 607–617. DOI: 10.1007/s10570-011-9527-x.
  • Lönnberg, H.; Larsson, K.; Lindström, T.; Hult, A.; Malmström, E. Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites–Influence of the Graft Length on the Mechanical Properties. ACS Appl. Mater. Interfaces 2011, 3, 1426–1433. DOI: 10.1021/am2001828.
  • Kusumi, R.; Teramoto, Y.; Nishio, Y. Structural Characterization of Poly(ε-Caprolactone)-Grafted Cellulose Acetate and Butyrate by Solid-State 13C NMR, Dynamic Mechanical, and Dielectric Relaxation Analyses. Polymer (Guildf) 2011, 52, 5912–5921. DOI: 10.1016/j.polymer.2011.10.032.
  • Gustavsson, M. T.; Persson, P. V.; Iversen, T.; Hult, K.; Martinelle, M. Polyester Coating of Cellulose Fiber Surfaces Catalyzed by a Cellulose-Binding Module- Candida Antarctica Lipase B Fusion Protein. Biomacromolecules 2004, 5, 106–112. DOI: 10.1021/bm034244y.
  • Ermeydan, M. A.; Babacan, M.; Tomak, E. D. Poly(ε-Caprolactone) Grafting into Scots Pine Wood: Improvement on the Dimensional Stability, Weathering and Decay Resistance. Cellulose 2021, 28, 5827–5841. DOI: 10.1007/s10570-021-03895-7.
  • Mantanis, G. I.; Young, R. A.; Rowell, R. M. Swelling of Wood. Part II. Swelling in Organic Liquids. Holzforschung 1994, 48, 480–490. DOI: 10.1515/hfsg.1994.48.6.480.
  • Sattayanon, C.; Kungwan, N.; Punyodom, W.; Meepowpan, P.; Jungsuttiwong, S. Theoretical Investigation on the Mechanism and Kinetics of the Ring-Opening Polymerization of ε-Caprolactone Initiated by Tin(II) Alkoxides. J Mol Model 2013, 19, 5377–5385. DOI: 10.1007/s00894-013-2026-2.
  • Carlmark, A.; Larsson, E.; Malmström, E. Grafting of Cellulose by Ring-Opening Polymerisation – A Review. Eur. Polym. J. 2012, 48, 1646–1659. DOI: 10.1016/j.eurpolymj.2012.06.013.
  • Park, I.-K.; Sun, H.; Kim, S.-H.; Kim, Y.; Kim, G. E.; Lee, Y.; Kim, T.; Choi, H. R.; Suhr, J.; Nam, J.-D. Solvent-Free Bulk Polymerization of Lignin-Polycaprolactone (PCL) Copolymer and Its Thermoplastic Characteristics. Sci Rep 2019, 9, 7033. DOI: 10.1038/s41598-019-43296-2.
  • Imre, B.; Kiss, E. Z.; Domján, A.; Cui, L.; Pukánszky, B. Ring-Opening Polymerization of ε-Caprolactone from Cellulose Acetate by Reactive Processing. Cellulose 2021, 28, 9103–9116. DOI: 10.1007/s10570-021-04038-8.
  • Sargent, R. Evaluating Dimensional Stability in Solid Wood: A Review of Current Practice. J Wood Sci 2019, 65, 36. DOI: 10.1186/s10086-019-1817-1.
  • Li, W.; Chen, L.; Li, Y.; Li, X. Bamboo Modification with 1,3-Dimethylol-4,5-Dihydroxyethyleneurea (DMDHEU) Catalyzed by Maleic Anhydride. J. Wood Chem. Technol. 2020, 40, 126–135. DOI: 10.1080/02773813.2019.1697293.
  • Giridhar, N.; Pandey, K. K.; Prasad, B. E.; Bisht, S. S.; Vagdevi, H. M. Dimensional Stabilization of Wood by Chemical Modification Using Isopropenyl Acetate. Maderas, Cienc. Tecnol. 2017. DOI: 10.4067/S0718-221X2017005000002.
  • Eranna, P. B.; Pandey, K. K.; Nagarajappa, G. B. A Note on the Effect of Microwave Heating on Iodine-Catalyzed Acetylation of Wood. J. Wood Chem. Technol. 2016, 36, 205–210. DOI: 10.1080/02773813.2015.1112405.
  • Ermeydan, M. A. Chemical Modification of Spruce Wood with Combination of Mesyl Chloride and Poly (ε-Caprolactone) for Improvement of Dimensional Stability and Water Absorption Properties. Kastamonu Univ. J. Forest. Faculty 2016, 16, 541–552.
  • Rowell, R. The Chemistry of Solid Wood; American Chemical Society: Washington, DC, 1984; Vol. 207. DOI: 10.1021/ba-1984-0207.
  • Sandberg, D.; Söderström, O. Crack Formation Due to Weathering of Radial and Tangential Sections of Pine and Spruce. Wood Mater. Sci. Eng. 2006, 1, 12–20. DOI: 10.1080/17480270600644407.
  • Yildiz, S.; Canakci, S.; Yildiz, U. C.; Ozgenc, O.; Tomak, E. D. Improving of the Impregnability of Refractory Spruce Wood by Bacillus Licheniformis Pretreatment. BioRes 2011, 7, 565–577. DOI: 10.15376/biores.7.1.565-577.
  • Jankowska, A.; Kozakiewicz, P. Evaluation of Wood Resistance to Artificial Weathering Factors Using Compressive Properties. Drvna Ind 2016, 67, 3–8. DOI: 10.5552/drind.2016.1355.
  • Tomak, E. D.; Topaloglu, E.; Ay, N.; Yildiz, U. C. Effect of Accelerated Aging on Some Physical and Mechanical Properties of Bamboo. Wood Sci. Technol. 2012, 46, 905–918. DOI: 10.1007/s00226-011-0454-7.
  • Özgenç, Ö.; Durmaz, S.; Boyaci, I. H.; Eksi-Kocak, H. Determination of Chemical Changes in Heat-Treated Wood Using ATR-FTIR and FT Raman Spectrometry. Spectrochim Acta A Mol Biomol Spectrosc 2017, 171, 395–400. DOI: 10.1016/j.saa.2016.08.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.