216
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Development of wood preservatives to prevent biodeterioration

, , , , &

References

  • Sundararaj, R. Science of Wood Degradation and Its Protection; Springer: Cham, 2022.
  • Colom, X.; Carrillo, F. Comparative Study of Wood Samples of the Northern Area of Catalonia by FTIR. J. Wood Chem. Technol. 2005, 25, 1–11. DOI: 10.1081/WCT-200058231.
  • Tsoumis, G. Science and Technology of Wood: Structure, Properties, Utilization; Van Nostrand Reinhold: New York, 1991.
  • Demirbas, A. Recent Advances in Biomass Conversion Technologies. Energy Edu. Sci. Technol. 2000, 6, 19–40.
  • Ross, R. J. Wood Handbook: Wood as an Engineering Material; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 2021.
  • Pettersen, R. C. The Chemical Composition of Wood. Adv. Chem. 1984, 207, 57–126.
  • Thomas, R. Wood: Structure and Chemical Composition; ACS Publications: Washington, DC, 1977.
  • Schultz, T. P.; Nicholas, D. D. Development of Environmentally-Benign Wood Preservatives Based on the Combination of Organic Biocides with Antioxidants and Metal Chelators. Phytochemistry 2002, 61, 555–560. DOI: 10.1016/s0031-9422(02)00267-4.
  • Ilgın, H. E.; Karjalainen, M.; Pelsmakers, S. Contemporary Tall Residential Timber Buildings: What Are the Main Architectural and Structural Design Considerations? IJBPA 2022, 41, 26–46. DOI: 10.1108/IJBPA-10-2021-0142.
  • Blanchet, P.; Pepin, S. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings 2021, 11, 1514. DOI: 10.3390/coatings11121514.
  • Howard, C.; Dymond, C. C.; Griess, V. C.; Tolkien-Spurr, D.; van Kooten, G. C. Wood Product Carbon Substitution Benefits: A Critical Review of Assumptions. Carbon Balance Manage. 2021, 16, 1–11.
  • Yusuf, S. Properties Enhancement of Wood by Cross-Lingking Formation and Its Application to the Reconstituted Wood Products. Wood Res. 1996, 83, 140–210.
  • Shortle, W. C.; Dudzik, K. R. Wood Decay in Living and Dead Trees: A Pictorial Overview; US Department of Agriculture, Forest Service, Northern Research Station: Washington, DC, 2012.
  • Dalponte, M.; Kallio, A. J.; Ørka, H. O.; Næsset, E.; Gobakken, T. Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sens. 2022, 14, 1892. DOI: 10.3390/rs14081892.
  • Maurice, S.; Le Floch, G.; Le Bras-Quéré, M.; Barbier, G. Improved Molecular Methods to Characterise Serpula lacrymans and Other Basidiomycetes Involved in Wood Decay. J. Microbiol. Methods 2011, 84, 208–215. DOI: 10.1016/j.mimet.2010.11.018.
  • Priadi, T. Wood Decay Hazard Analyses of Residential Buildings in Java Island. 2011. https://repository.ipb.ac.id/handle/123456789/51739
  • Yalçın, M.; Doğan, H. H.; Akçay, Ç. Identification of Wood-Decay Fungi and Assessment of Damage in Log Depots of Western Black Sea Region (Turkey). For. Pathol. 2019, 49, e12499.
  • Woodward, S.; Stenlid, J.; Karjalainen, R.; Huttermann, A. Heterobasidion annosum: Biology, Ecology, Impact and Control; New York: Wiley, 1998.
  • Oh, J.-J.; Choi, Y.-S.; Sun, Kim, G.; Kim, G.-H. Assessment of the Effects of Projected Climate Change on the Potential Risk of Wood Decay in Korea. J. Cult. Herit. 2022, 55, 43–47. DOI: 10.1016/j.culher.2022.02.004.
  • Sierota, Z.; Żółciak, A.; Małecka, M.; Sikora, K.; Damszel, M. An Approach to Calculate CO2 Release through Norway Spruce Wood Decay by Heterobasidion Parviporum. Dendrobiology 2018, 79, 91–96. DOI: 10.12657/denbio.079.008.
  • Gupta, R. Fungal Decay of traditional Fishing Craft. 1993. http://drs.nio.org/drs/handle/2264/2776
  • Blanchette, R. A.; Haight, J. E.; Koestler, R. J.; Hatchfield, P. B.; Arnold, D. Assessment of Deterioration in Archaeological Wood from Ancient Egypt. J. Am. Inst. Conser. 1994, 33, 55–70. DOI: 10.1179/019713694806066428.
  • Brischke, C.; Meyer-Veltrup, L.; Thelandersson, S.; Malo, K. 2015Wood Protection by Design-Concepts for Durable Timber Bridges. 11th Meeting of the Northern European Network on Wood Science and Engineering, 6.
  • Preston, A. F. Wood Preservation. For. Prod. J. 2000, 50, 12.
  • Gerengi, H.; Tascioglu, C.; Akcay, C.; Kurtay, M. Impact of Copper Chrome Boron (CCB) Wood Preservative on the Corrosion of St37 Steel. Ind. Eng. Chem. Res. 2014, 53, 19192–19198. DOI: 10.1021/ie5033342.
  • Brocco, V. F.; Paes, J. B.; da Costa, L. G.; Brazolin, S.; Arantes, M. D. C. Potential of Teak Heartwood Extracts as a Natural Wood Preservative. J. Clean. Prod. 2017, 142, 2093–2099. DOI: 10.1016/j.jclepro.2016.11.074.
  • Harmon, M. E.; Franklin, J. F.; Swanson, F. J.; Sollins, P.; Gregory, S.; Lattin, J.; Anderson, N.; Cline, S.; Aumen, N.; Sedell, J. Ecology of Coarse Woody Debris in Temperate Ecosystems. Adv. Ecol. Res. 1986, 15, 133–302.
  • Hiziroglu, S. Basics of Pressure Treatment of Wood; Oklahoma State University, Division of Agricultural Sciences and Natural: Stillwater, OK, 2004.
  • Coûteaux, M. M.; Bottner, P.; Berg, B. Litter Decomposition, Climate and Liter Quality. Trends Ecol. Evol. 1995, 10, 63–66. DOI: 10.1016/S0169-5347(00)88978-8.
  • Williams, R. S. Weathering of Wood. In Handbook of Wood Chemistry and Wood Composites, Rowell, R. M., Ed.; CRC Press: Boca Raton, FL, 2005; Vol. 7, pp 139–185.
  • Dietenberger, M.; Hasburgh, L. Wood Products: Thermal Degradation and Fire. Ref. Module Mater. Sci. Mater. Eng. 2016, 1, 1–8.
  • Feist, W. C.; Hon, D. N.-S. Chemistry of Weathering and Protection. Adv. Chem. Ser. 1984, 207, 401–451.
  • Kirker, G.; Winandy, J. Above Ground Deterioration of Wood and Wood-Based Materials. In Deterioration and Protection of Sustainable Biomaterials; ACS Publications: Washington, DC, 2014; pp 113–129.
  • Feist, W. C. Outdoor Wood Weathering and Protection. Adv. Chem. Ser. 1990, 225, 263–298.
  • Green, F.; Larsen, M. J.; Winandy, J. E.; Highley, T. L. Role of Oxalic Acid in Incipient Brown-Rot Decay. Mater. Org. 1991, 26, 191–213.
  • Eaton, R. A Hale,.; M.; D. Wood: Decay, Pests and Protection; Chapman and Hall Ltd: Boca Raton, FL, 1993.
  • Tiemann, H. D. Effect of Moisture upon the Strength and Stiffness of Wood; US Department of Agriculture, Forest Service: Washington, DC, 1906.
  • Siau, J. F. Transport Processes in Wood; Springer Science & Business Media: Cham, 2012.
  • Schwarze, F. W. Wood Decay under the Microscope. Fungal Biol. Rev. 2007, 21, 133–170. DOI: 10.1016/j.fbr.2007.09.001.
  • Shupe, T. F.; Lebow, S. T.; Ring, D. R. Causes and Control of Wood Decay, Degradation & Stain; Louisiana State University Agricultural Center, Louisiana Cooperative: Baton Rouge, LA, 2008.
  • Downer, A. J.; Perry, E. J. Wood Decay Fungi in Landscape Trees; UC IPM Pest Notes; UC ANR Publication: Oakland, CA, 2019; Vol. 74109, p 6.
  • Allsopp, D.; Seal, K. J.; Gaylarde, C. C. Introduction to Biodeterioration; Cambridge University Press: Cambridge, 2004.
  • Kazulis, V.; Muizniece, I.; Zihare, L.; Blumberga, D. Carbon Storage in Wood Products. Energy Procedia 2017, 128, 558–563. DOI: 10.1016/j.egypro.2017.09.009.
  • Walker, J. C.; Archer, K.; Lebow, S. Wood Preservation. In Primary Wood Processing: Principles and Practice, Walker, J. C., Ed.; Springer: Cham, 2006; pp 297–338.
  • Ozdemir, T.; Temiz, A.; Aydin, I. Effect of Wood Preservatives on Surface Properties of Coated Wood. Adv. Mater. Sci. Eng. 2015, 2015, 1–6. DOI: 10.1155/2015/631835.
  • Levi, M. Control Methods. In Wood Deterioration and Its Prevention by Preservative Treatments, Nicholas, D. D., Ed.; Syracuse University Press: New York, 1973; Vol. 1, pp 198–203.
  • Stirling, R.; Temiz, A. Fungicides and Insecticides Used in Wood Preservation. In Deterioration and Protection of Sustainable Biomaterials; ACS Publications: Washington, DC, 2014; pp 185–201.
  • Schultz, T. P.; Nicholas, D. D.; Preston, A. F. A Brief Review of the Past, Present and Future of Wood Preservation. Pest Manage. Sci. 2007, 63, 784–788. DOI: 10.1002/ps.1386.
  • Bolin, C. A.; Smith, S. T. Life Cycle Assessment of Pentachlorophenol-Treated Wooden Utility Poles with Comparisons to Steel and Concrete Utility Poles. Renew. Sust. Energ. Rev. 2011, 15, 2475–2486. DOI: 10.1016/j.rser.2011.01.019.
  • Kang, S.; Morrell, J. J.; Simonsen, J.; Lebow, S. Creosote Movement from Treated Wood Immersed in Fresh Water. For. Prod. J. 2005, 55, 42.
  • Proudfoot, A. T. Pentachlorophenol Poisoning. Toxicol. Rev. 2003, 22, 3–11. DOI: 10.2165/00139709-200322010-00002.
  • Nicholas, D. D. Comparative Field Performance of Oilborne Pentachlorophenol versus the Substituted Isothiazolone DCOI as Wood Preservatives. Int. Wood Prod. J. 2018, 9, 171–175. DOI: 10.1080/20426445.2018.1548722.
  • Chen, S.-T.; Hsu, C.-Y.; Berthouex, P. Fate and Modeling of Pentachlorophenol Degradation in a Laboratory-Scale Anaerobic Sludge Digester. J. Environ. Eng. 2006, 132, 795–802. DOI: 10.1061/(ASCE)0733-9372(2006)132:7(795).
  • Roman, H. T. The Creosote Wood Pole Challenge. Technol. Eng. Teach. 2015, 74, 26.
  • Tullo, A. H. Making Pillars of the Community Safer the Days of Preserving Utility Poles with Pentachlorophenol Appear to Be Numbered, and the Industry Is Looking for Substitutes. American Chemical Society: Washington, DC, 2020; Vol. 98, pp 22–23.
  • EPA Requires Cancellation of Pentachlorophenol to Protect Human Health. USEP Agency: Washington, DC, 2022.
  • Zabell, R.; Morrell, J. Wood Microbiology: Decay and Its Prevention. Academic Press: San Diego, 1994.
  • Smith, S. T. Water-Borne Wood Preservation and End-of-Life Removal History and Projection. ENG 2020, 12, 117–139. DOI: 10.4236/eng.2020.122011.
  • Zhang, Y.; Jiang, M. Corrosiveness of Metal by Copper-Based Preservatives. In IRG/WP 06–40329. The International Research Group on Wood Preservation. IRG Secretariat: Stockholm, 2006.
  • McIntyre, C.; Freeman, M. A Comprehensive Review of Copper-Based Wood Preservatives with a Focus on New Micronized or Dispersed Copper Systems. For. Prod. J. 2008, 58, 6–27.
  • Coles, C. A.; Arisi, J. A.; Organ, M.; Veinott, G. I. Leaching of Chromium, Copper, and Arsenic from CCA-Treated Utility Poles. Appl. Environ. Soil Sci. 2014, 2014, 1–11. DOI: 10.1155/2014/167971.
  • Archer, K.; Preston, A. An Overview of Copper Based Wood Preservatives. Presented at Wood Protection, 2006.
  • Stook, K.; Tolaymat, T.; Ward, M.; Dubey, B.; Townsend, T.; Solo-Gabriele, H.; Bitton, G. Relative Leaching and Aquatic Toxicity of Pressure-Treated Wood Products Using Batch Leaching Tests. Environ. Sci. Technol. 2005, 39, 155–163. DOI: 10.1021/es0493603.
  • Rammer, D. R.; Zelinka, S. L.; Line, P. 2006Fastener Corrosion: Testing, Research and Design Considerations. 9th World Conference on timber engineering. Oregon State University, 1–8.
  • Matsunaga, H.; Kiguchi, M.; Evans, P. D. Microdistribution of Copper-Carbonate and Iron Oxide Nanoparticles in Treated Wood. J. Nanopart. Res. 2009, 11, 1087–1098. DOI: 10.1007/s11051-008-9512-y.
  • MacLean, J. D. Preservation Treatment of Wood by Pressure Methods; US Department of Agriculture, Forest Service: Washington, DC, 1952.
  • Dhyani, S.; Kamdem, D. Bioavailability and Form of Copper in Wood Treated with Copper-Based Preservative. Wood Sci. Technol. 2012, 46, 1203–1213. DOI: 10.1007/s00226-012-0475-x.
  • Schultz, T. P.; Nicholas, D. D. Chemical Wood Preservative Systems in North America. In Managing Treated Wood in Aquatic Environments, Morrell, J. J.; Brooks, K. M., Davis, C. M., Eds.; Forest Products Society, Madison, WI, 2010; pp 29–35.
  • Tapin-Lingua, S.; Ruel, K.; Joseleau, J.-P.; Messaoudi, D.; Fahy, O.; Jequel, M.; Petit-Conil, M. Assessing Cypermethrin Penetration in Pinus sylvestris Wood Products by Immuno-Electron Microscopy. Wood Sci. Technol. 2016, 50, 349–364. DOI: 10.1007/s00226-015-0787-8.
  • Griggs, J. L.; Rogers, K. R.; Nelson, C.; Luxton, T.; Platten, W. E., III; Bradham, K. D. In Vitro Bioaccessibility of Copper Azole following Simulated Dermal Transfer from Pressure-Treated Wood. Sci. Total Environ. 2017, 598, 413–420. DOI: 10.1016/j.scitotenv.2017.03.227.
  • Cui, F.; Preston, A. F. Emulsion Compositions for Wood Protection. Google Patents, 2010.
  • Zhu, Y.; Xue, J.; Cao, J.; Xiao, H. A Potential Mechanism for Degradation of 4, 5-Dichloro-2-(n-Octyl)-3 [2H]-Isothiazolone (DCOIT) by Brown-Rot Fungus Gloeophyllum trabeum. J. Hazard Mater. 2017, 337, 72–79. DOI: 10.1016/j.jhazmat.2017.04.072.
  • Freeman, M. H.; Nicholas, D. D.; Schultz, T. P. Non-Arsenical Wood Protection: Alternatives for CCA, Creosote, and Pentachlorophenol. In Environmental Impacts of Treated Wood, Townsend, T. G., Solo-Gabriele, H., Eds.; Taylor & Francis: London, 2006.
  • Peylo, A.; Willeitner, H. Five Years Leaching of Boron; IRG Secretariat: Stockholm, 1999.
  • Obanda, D. N.; Shupe, T. F.; Barnes, H. M. Reducing Leaching of Boron-Based Wood Preservatives–A Review of Research. Bioresour. Technol. 2008, 99, 7312–7322. DOI: 10.1016/j.biortech.2007.12.077.
  • Yalinkilic, M. Biological Resistance of Steam-Compressed Wood Pretreated with Boric Compounds; IRG Secretariat: Stockholm, 1999.
  • Thévenon, M.-F.; Pizzi, A.; Haluk, J.; Zaremski, A. Normalised Biological Tests of Protein Borates Wood Preservatives. Holz Als Roh-Und Werkstoff 1998, 56, 162–162. DOI: 10.1007/s001070050290.
  • Ahn, S. H.; Oh, S. C.; Choi, I.-G.; Han, G.-S.; Jeong, H.-S.; Kim, K.-W.; Yoon, Y.-H.; Yang, I. Environmentally Friendly Wood Preservatives Formulated with Enzymatic-Hydrolyzed Okara, Copper and/or Boron Salts. J. Hazard Mater. 2010, 178, 604–611. DOI: 10.1016/j.jhazmat.2010.01.128.
  • Hadrup, N.; Frederiksen, M.; Sharma, A. K. Toxicity of Boric Acid, Borax and Other Boron Containing Compounds: A Review. Regul. Toxicol. Pharmacol. 2021, 121, 104873. DOI: 10.1016/j.yrtph.2021.104873.
  • Zabielska-Matejuk, J.; Czaczyk, K. Biodegradation of New Quaternary Ammonium Compounds in Treated Wood by Mould Fungi. Wood Sci. Technol. 2006, 40, 461–475. DOI: 10.1007/s00226-005-0065-2.
  • Yang, D.-Q. Potential Utilization of Plant and Fungal Extracts for Wood Protection. For. Prod. J. 2009, 59, 97–103.
  • Cheng, S.-S.; Liu, J.-Y.; Hsui, Y.-R.; Chang, S.-T. Chemical Polymorphism and Antifungal Activity of Essential Oils from Leaves of Different Provenances of Indigenous Cinnamon (Cinnamomum osmophloeum). Bioresour. Technol. 2006, 97, 306–312. DOI: 10.1016/j.biortech.2005.02.030.
  • Wan, H.; Wang, X.; Yang, D. Utilizing Eastern White Cedar to Improve the Resistance of Strand Boards to Mold and Decay Fungi. For. Prod. J. 2007, 57, 54.
  • Hashemi, S. K. H.; Latibari, A. J. Evaluation and Identification of Walnut Heartwood Extractives for Protection of Poplar Wood. BioRes 2010, 6, 59–69. DOI: 10.15376/biores.6.1.59-69.
  • Fernández-Costas, C.; Palanti, S.; Charpentier, J.-P.; Sanromán, M. Á.; Moldes, D. A Sustainable Treatment for Wood Preservation: Enzymatic Grafting of Wood Extractives. ACS Sustainable Chem. Eng. 2017, 5, 7557–7567. DOI: 10.1021/acssuschemeng.7b00714.
  • Kartal, S. N.; Hwang, W.-J.; Imamura, Y.; Sekine, Y. Effect of Essential Oil Compounds and Plant Extracts on Decay and Termite Resistance of Wood. Holz Roh Werkst 2006, 64, 455–461. DOI: 10.1007/s00107-006-0098-8.
  • Maoz, M.; Weitz, I.; Blumenfeld, M.; Freitag, C.; Morrell, J. Antifungal Activity of Plant Derived Extracts against G. trabeum. The International Research Group on Wood Preservation, IRG/WP, 2007, 07–30433.
  • Torr, K.; Singh, A.; Franich, R. Improving Stiffness of Lignocellulosics through Cell Wall Modification with Chitosanmelamine co-Polymers. N. Z. J. For. Sci. 2006, 36, 87.
  • Schultz, T.; Nicholas, D.; Kelly, S. A Nonleachable Waterborne Composition of Resin Acids and Wood Preserving Organic Biocides. US Provisional Pat. 2006, 60, 669.
  • Borges, C. C.; Tonoli, G. H. D.; Cruz, T. M.; Duarte, P. J.; Junqueira, T. A. Nanoparticles-Based Wood Preservatives: The Next Generation of Wood Protection? Cerne 2018, 24, 397–407. DOI: 10.1590/01047760201824042531.
  • Ogrodnik, P.; Pieniak, D.; Bilski, D. Reseach on the Impact of Fireproof Impregnation by Preservatives Containing Nanoparticles on the Strength of Construction Timber in Increased Temperatures. Procedia Eng. 2017, 172, 800–807. DOI: 10.1016/j.proeng.2017.02.127.
  • Civardi, C.; Van den Bulcke, J.; Schubert, M.; Michel, E.; Butron, M. I.; Boone, M. N.; Dierick, M.; Van Acker, J.; Wick, P.; Schwarze, F. W. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species. PLoS One 2016, 11, e0163124. DOI: 10.1371/journal.pone.0163124.
  • Studer, A. M.; Limbach, L. K.; Van Duc, L.; Krumeich, F.; Athanassiou, E. K.; Gerber, L. C.; Moch, H.; Stark, W. J. Nanoparticle Cytotoxicity Depends on Intracellular Solubility: Comparison of Stabilized Copper Metal and Degradable Copper Oxide Nanoparticles. Toxicol. Lett. 2010, 197, 169–174. DOI: 10.1016/j.toxlet.2010.05.012.
  • Midander, K.; Cronholm, P.; Karlsson, H. L.; Elihn, K.; Möller, L.; Leygraf, C.; Wallinder, I. O. Surface Characteristics, Copper Release, and Toxicity of Nano- and Micrometer-Sized Copper and Copper (II) Oxide Particles: A Cross-Disciplinary Study. Small 2009, 5, 389–399. DOI: 10.1002/smll.200801220.
  • Civardi, C.; Schubert, M.; Fey, A.; Wick, P.; Schwarze, F. W. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta. PLoS One 2015, 10, e0142578. DOI: 10.1371/journal.pone.0142578.
  • Pantano, D.; Neubauer, N.; Navratilova, J.; Scifo, L.; Civardi, C.; Stone, V.; von der Kammer, F.; Müller, P.; Sobrido, M. S.; Angeletti, B.; et al. Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle. Environ. Sci. Technol. 2018, 52, 1128–1138. DOI: 10.1021/acs.est.7b04130.
  • Forest Products Laboratory. Wood Handbook: Wood as an Engineering Material; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 1987.
  • Singh, T.; Singh, A. P. A Review on Natural Products as Wood Protectant. Wood Sci. Technol. 2012, 46, 851–870. DOI: 10.1007/s00226-011-0448-5.
  • Little, N. S.; Schultz, T. P.; Nicholas, D. D. Termite-Resistant Heartwood. Effect of Antioxidants on Termite Feeding Deterrence and Mortality. Holzforschung 2010, 64, 395–398.
  • Rabea, E. I.; Badawy, M. E.-T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. DOI: 10.1021/bm034130m.
  • Tomak, E.; Gonultas, O. The Wood Preservative Potentials of Valonia, Chestnut, Tara and Sulphited Oak Tannins. J. Wood Chem. Technol. 2018, 38, 183–197. DOI: 10.1080/02773813.2017.1418379.
  • Panov, D.; Terziev, N. Study on Some Alkoxysilanes Used for Hydrophobation and Protection of Wood against Decay. Int. Biodeterior. Biodegrad. 2009, 63, 456–461. DOI: 10.1016/j.ibiod.2008.12.003.
  • Kartal, S. N.; Yoshimura, T.; Imamura, Y. Modification of Wood with Si Compounds to Limit Boron Leaching from Treated Wood and to Increase Termite and Decay Resistance. Int. Biodeterior. Biodegrad. 2009, 63, 187–190. DOI: 10.1016/j.ibiod.2008.08.006.
  • Chittenden, C.; Singh, T. In Vitro Evaluation of Combination of Trichoderma harzianum and Chitosan for the Control of Sapstain Fungi. Biol. Control. 2009, 50, 262–266. DOI: 10.1016/j.biocontrol.2009.04.015.
  • Hammel, K. E.; Kapich, A. N.; Jensen, K. A.; Jr; Ryan, Z. C. Reactive Oxygen Species as Agents of Wood Decay by Fungi. Enzyme Microb. Technol. 2002, 30, 445–453. DOI: 10.1016/S0141-0229(02)00011-X.
  • Mabicka, A.; Dumarçay, S.; Rouhier, N.; Linder, M.; Jacquot, J.; Gérardin, P.; Gelhaye, E. Synergistic Wood Preservatives Involving EDTA, Irganox 1076 and 2-hydroxypyridine-N-Oxide. Int. Biodeterior. Biodegrad. 2005, 55, 203–211. DOI: 10.1016/j.ibiod.2005.01.002.
  • Evans, P. Emerging Technologies in Wood Protection. For. Prod. J. 2003, 53, 14.
  • Holy, S.; Temiz, A.; Köse Demirel, G.; Aslan, M.; Mohamad Amini, M. H. Physical Properties, Thermal and Fungal Resistance of Scots Pine Wood Treated with Nano-Clay and Several Metal-Oxides Nanoparticles. Wood Mater. Sci. Eng. 2022, 17, 176–185. DOI: 10.1080/17480272.2020.1836023.
  • Kol, H. Ş.; Çayır, B. The Effects of Increasing Preservative Uptake by Microwave Pre-Treatment on the Microstructure and Mechanical Properties of Oriental Spruce Wood. Wood Mater. Sci. Eng. 2023, 18, 732–738. DOI: 10.1080/17480272.2022.2077656.
  • Usmani, S. M.; Voss, L.; Stephan, I.; Hübert, T.; Kemnitz, E. Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi. Appl. Sci. 2022, 12, 1727. DOI: 10.3390/app12031727.
  • Ding, X.; Richter, D. L.; Matuana, L. M.; Heiden, P. Efficient One-Pot Synthesis and Loading of Self-Assembled Amphiphilic Chitosan Nanoparticles for Low-Leaching Wood Preservation. Carbohydr. Polym. 2011, 86, 58–64. DOI: 10.1016/j.carbpol.2011.04.002.
  • Barbero-López, A.; Akkanen, J.; Lappalainen, R.; Peräniemi, S.; Haapala, A. Bio-Based Wood Preservatives: Their Efficiency, Leaching and Ecotoxicity Compared to a Commercial Wood Preservative. Sci. Total Environ. 2021, 753, 142013. DOI: 10.1016/j.scitotenv.2020.142013.
  • Yan, L.; Zeng, F.; Chen, Z.; Chen, S.; Lei, Y. Improvement of Wood Decay Resistance by Salicylic Acid/Silica Microcapsule: Effects on the Salicylic Leaching, Microscopic Structure and Decay Resistance. Int. Biodeterior. Biodegrad. 2021, 156, 105134. DOI: 10.1016/j.ibiod.2020.105134.
  • Murguia, M. C.; Machuca, L. M.; Fernandez, M. E. Cationic Gemini Compounds with Antifungal Activity and Wood Preservation Potentiality. J. Ind. Eng. Chem. 2019, 72, 170–177. DOI: 10.1016/j.jiec.2018.12.016.
  • Bobadilha, G. S.; Stokes, C. E.; Kirker, G.; Ahmed, S. A.; Ohno, K. M.; Lopes, D. J. V. Effect of Exterior Wood Coatings on the Durability of Cross-Laminated Timber against Mold and Decay Fungi. BioRes 2020, 15, 8420–8433. DOI: 10.15376/biores.15.4.8420-8433.
  • Kucuktuvek, M.; Toker, H.; Turkoglu, T.; Gunduz, A.; Altay, C.; Baysal, E. Improving Weathering Performance of Wood by Borates Impregnation and Liquid Glass Coating. Drv. Ind. 2020, 71, 347–354. DOI: 10.5552/drvind.2020.1923.
  • Mehramiz, S.; Oladi, R.; Efhamisisi, D.; Pourtahmasi, K. Natural Durability of the Iranian Domestic Bamboo (Phyllostachys vivax) against Fungal Decay and Its Chemical Protection with Propiconazole. Eur. J. Wood Prod. 2021, 79, 453–464. DOI: 10.1007/s00107-020-01601-1.
  • Lahtela, V.; Hämäläinen, K.; Kärki, T. The Effects of Preservatives on the Properties of Wood after Modification. Balt. For. 2013, 20, 189–203.
  • Rautkari, L. Surface Modification of Solid Wood Using Different Techniques; Aalto University: Espoo, 2012.
  • Devi, R. R.; Ali, I.; Maji, T. Chemical Modification of Rubber Wood with Styrene in Combination with a Crosslinker: Effect on Dimensional Stability and Strength Property. Bioresour. Technol. 2003, 88, 185–188. DOI: 10.1016/s0960-8524(03)00003-8.
  • Dieste, A.; Krause, A.; Bollmus, S.; Militz, H. Physical and Mechanical Properties of Plywood Produced with 1.3-Dimethylol-4.5-Dihydroxyethyleneurea (DMDHEU)-Modified Veneers of Betula sp and Fagus sylvatica. Holz Roh Werkst 2008, 66, 281–287.
  • Simsek, H.; Baysal, E.; Peker, H. Some Mechanical Properties and Decay Resistance of Wood Impregnated with Environmentally-Friendly Borates. Const. Build. Mater. 2010, 24, 2279–2284. DOI: 10.1016/j.conbuildmat.2010.04.028.
  • Winandy, J. E.; Hassan, B.; Morrell, J. J. Review of the Effects of Incising on Treatability and Strength of Wood. Wood Mater. Sci. Eng. 2023, 18, 751–762. DOI: 10.1080/17480272.2022.2028008.
  • Krehula, L. K.; Katančić, Z.; Siročić, A. P.; Hrnjak-Murgić, Z. Weathering of High-Density Polyethylene-Wood Plastic Composites. J. Wood Chem. Technol. 2014, 34, 39–54. DOI: 10.1080/02773813.2013.827209.
  • Oltean, L.; Teischinger, A.; Hansmann, C. Wood Surface Discolouration Due to Simulated Indoor Sunlight Exposure. Holz Roh Werkst 2008, 66, 51–56. DOI: 10.1007/s00107-007-0201-9.
  • Hon, D.; Shiraishi, N. Wood and Cellulosic Chemistry, 2nd ed.; Marcel Dekker. Inc: New York, 2001.
  • Temiz, A.; Terziev, N.; Jacobsen, B.; Eikenes, M. Weathering, Water Absorption, and Durability of Silicon, Acetylated, and Heat-Treated Wood. J. Appl. Polym. Sci. 2006, 102, 4506–4513. DOI: 10.1002/app.24878.
  • Xiao, Z.; Xie, Y.; Adamopoulos, S.; Mai, C. Effects of Chemical Modification with Glutaraldehyde on the Weathering Performance of Scots Pine Sapwood. Wood Sci. Technol. 2012, 46, 749–767. DOI: 10.1007/s00226-011-0441-z.
  • Pandey, K. K.; Hughes, M.; Vuorinen, T. Dimensional Stability, UV Resistance, and Static Mechanical Properties of Scots Pine Chemically Modified with Alkylene Epoxides. BioRes 2010, 5, 298–615. DOI: 10.15376/biores.5.2.598-615.
  • Hansmann, C.; Deka, M.; Wimmer, R.; Gindl, W. Artificial Weathering of Wood Surfaces Modified by Melamine Formaldehyde Resins. Holz Roh Werkst 2006, 64, 198–203. DOI: 10.1007/s00107-005-0047-y.
  • Bergman, R. Drying and Control of Moisture Content and Dimensional Changes. In Wood Handbook, FPL-GTR-282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 2021, pp 1–21.
  • Islam, M. S.; Hamdan, S.; Hasan, M.; Rusop, M.; Rahman, M. R.; Idrus, M. M. Physico-Mechanical and Decay Resistance Properties of Chemically Modified Tropical Wood Material. J. Appl. Polym. Sci. 2013, 127, 1555–1560. DOI: 10.1002/app.37509.
  • Yona, A. M. C.; Žigon, J.; Matjaž, P.; Petrič, M. Potentials of Silicate-Based Formulations for Wood Protection and Improvement of Mechanical Properties: A Review. Wood Sci. Technol. 2021, 55, 887–918. DOI: 10.1007/s00226-021-01290-w.
  • Rowell, R. M. 2008 Production of Dimensionally Stable and Decay Resistant Wood Components Based on Acetylation. 11DBMC (the 11th International Conference on Durability of Building Materials and Components).
  • Khalil, H. A.; Irshad-Ul-Haq, B.; Awang, K. B. Preliminary Study on Enhanced Properties and Biological Resistance of Chemically Modified Acacia spp. BioRes 2010, 5, 2720–2737. DOI: 10.15376/biores.5.4.2720-2737.
  • Chang, H.-T.; Chang, S.-T. Improvements in Dimensional Stability and Lightfastness of Wood by Butyrylation Using Microwave Heating. J. Wood Sci. 2003, 49, 455–460. DOI: 10.1007/s10086-002-0504-8.
  • Hill, C. A.; Forster, S.; Farahani, M.; Hale, M.; Ormondroyd, G.; Williams, G. An Investigation of Cell Wall Micropore Blocking as a Possible Mechanism for the Decay Resistance of Anhydride Modified Wood. Int. Biodeterior. Biodegrad. 2005, 55, 69–76. DOI: 10.1016/j.ibiod.2004.07.003.
  • Lande, S.; Westin, M.; Schneider, M. Properties of Furfurylated Wood. Scand. J. For. Res. 2004, 19, 22–30. DOI: 10.1080/0282758041001915.
  • Pedieu, R.; Koubaa, A.; Riedl, B.; Wang, X.; Deng, J. Fire-Retardant Properties of Wood Particleboards Treated with Boric Acid. Eur. J. Wood Prod. 2012, 70, 191–197. DOI: 10.1007/s00107-011-0538-y.
  • White, R. H.; Dietenberger, M. A. Fire Safety of Wood Construction. Interface 2010, 18, 3.
  • Jebrane, M.; Harper, D.; Labbé, N.; Sèbe, G. Comparative Determination of the Grafting Distribution and Viscoelastic Properties of Wood Blocks Acetylated by Vinyl Acetate or Acetic Anhydride. Carbohydr. Polym. 2011, 84, 1314–1320. DOI: 10.1016/j.carbpol.2011.01.026.
  • Gascón-Garrido, P.; Oliver-Villanueva, J. V.; Ibiza-Palacios, M.; Militz, H.; Mai, C.; Adamopoulos, S. Resistance of Wood Modified with Different Technologies against Mediterranean Termites (Reticulitermes spp.). Int. Biodeterior. Biodegrad. 2013, 82, 13–16. DOI: 10.1016/j.ibiod.2012.07.024.
  • Pu, Y.; Ragauskas, A. J. Structural Analysis of Acetylated Hardwood Lignins and Their Photoyellowing Properties. Can. J. Chem. 2005, 83, 2132–2139. DOI: 10.1139/v05-231.
  • Gérardin, P. New Alternatives for Wood Preservation Based on Thermal and Chemical Modification of Wood—A Review. Ann. For. Sci. 2016, 73, 559–570. DOI: 10.1007/s13595-015-0531-4.
  • Xie, Y.; Krause, A.; Mai, C.; Militz, H.; Richter, K.; Urban, K.; Evans, P. Weathering of Wood Modified with the N-Methylol Compound 1, 3-Dimethylol-4, 5-Dihydroxyethyleneurea. Polym. Degrad. Stab. 2005, 89, 189–199. DOI: 10.1016/j.polymdegradstab.2004.08.017.
  • Dieste, A.; Krause, A.; Mai, C.; Sèbe, G.; Grelier, S.; Militz, H. Modification of Fagus sylvatica L. with 1, 3-Dimethylol-4, 5-Dihydroxy Ethylene Urea (DMDHEU). Part 2: Pore Size Distribution Determined by Differential Scanning Calorimetry. Holzforschung 2009, 63, 89–93.
  • Xie, Y.; Krause, A.; Militz, H.; Mai, C. Coating Performance of Finishes on Wood Modified with an N-Methylol Compound. Prog. Org. Coat 2006, 57, 291–300. DOI: 10.1016/j.porgcoat.2006.06.010.
  • Verma, P.; Junga, U.; Militz, H.; Mai, C. Protection Mechanisms of DMDHEU Treated Wood against White and Brown Rot Fungi. Holzforschung 2009, 63, 371–378.
  • Barroso Lopes, D.; Mai, C.; Militz, H. Marine Borers Resistance of Chemically Modified Portuguese Wood. Maderas, Cienc. tecnol. 2014, 16, 0–0. DOI: 10.4067/S0718-221X2014005000010.
  • Lande, S.; Westin, M.; Schneider, M. Development of Modified Wood Products Based on Furan Chemistry. Mol. Cryst. Liq. Cryst. 2008, 484, 367–378. DOI: 10.1080/15421400801901456.
  • Epmeier, H.; Westin, M.; Rapp, A. Differently Modified Wood: Comparison of Some Selected Properties. Scand. J. For. Res. 2004, 19, 31–37. DOI: 10.1080/02827580410017825.
  • Epmeier, H.; Johansson, M.; Kliger, R.; Westin, M. Material Properties and Their Interrelation in Chemically Modified Clear Wood of Scots Pine. Holzforschung 2007, 61, 34–42.
  • De Vetter, L.; Depraetere, G.; Janssen, C.; Stevens, M.; Van Acker, J. Methodology to Assess Both the Efficacy and Ecotoxicology of Preservative-Treated and Modified Wood. Ann. For. Sci. 2008, 65, 504–504. DOI: 10.1051/forest:2008030.
  • Yildiz, S.; Gezer, E. D.; Yildiz, U. C. Mechanical and Chemical Behavior of Spruce Wood Modified by Heat. Build. Environ. 2006, 41, 1762–1766. DOI: 10.1016/j.buildenv.2005.07.017.
  • Šušteršic, Ž.; Mohareb, A.; Chaouch, M.; Pétrissans, M.; Petrič, M.; Gérardin, P. Prediction of the Decay Resistance of Heat Treated Wood on the Basis of Its Elemental Composition. Polym. Degrad. Stab. 2010, 95, 94–97. DOI: 10.1016/j.polymdegradstab.2009.10.013.
  • Srinivas, K.; Pandey, K. K. Effect of Heat Treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32, 304–316. DOI: 10.1080/02773813.2012.674170.
  • Salman, S.; Thévenon, M. F.; Pétrissans, A.; Dumarçay, S.; Candelier, K.; Gérardin, P. Improvement of the Durability of Heat-Treated Wood against Termites. Maderas, Cienc. tecnol. 2017, 19, 0–0. DOI: 10.4067/S0718-221X2017005000027.
  • Evans, P. D.; Matsunaga, H.; Preston, A. F.; Kewish, C. M. Wood Protection for Carbon Sequestration—a Review of Existing Approaches and Future Directions. Curr. For. Rep. 2022, 8, 181–198. DOI: 10.1007/s40725-022-00166-x.
  • Hasan, A. R.; Hu, L.; Solo-Gabriele, H. M.; Fieber, L.; Cai, Y.; Townsend, T. G. Field-Scale Leaching of Arsenic, Chromium and Copper from Weathered Treated Wood. Environ. Pollut. 2010, 158, 1479–1486. DOI: 10.1016/j.envpol.2009.12.027.
  • Hasan, A. R.; Schindler, J.; Solo-Gabriele, H. M.; Townsend, T. G. Online Sorting of Recovered Wood Waste by Automated XRF-Technology. Part I: Detection of Preservative-Treated Wood Waste. Waste Manage. 2011, 31, 688–694. DOI: 10.1016/j.wasman.2010.11.010.
  • Adam, O.; Badot, P.-M.; Degiorgi, F.; Crini, G. Mixture Toxicity Assessment of Wood Preservative Pesticides in the Freshwater Amphipod Gammarus pulex (L.). Ecotoxicol. Environ. Saf. 2009, 72, 441–449. DOI: 10.1016/j.ecoenv.2008.07.017.
  • Pascual, J. A.; Peris, S. J. Effects of Forest Spraying with Two Application Rates of Cypermethrin on Food Supply and on Breeding Success of the Blue Tit (Parus caeruleus). Environ. Toxicol. Chem. 1992, 11, 1271–1280. DOI: 10.1897/1552-8618(1992)11[1271:EOFSWT]2.0.CO;2.
  • Ullah, S.; Zuberi, A.; Alagawany, M.; Farag, M. R.; Dadar, M.; Karthik, K.; Tiwari, R.; Dhama, K.; Iqbal, H. M. Cypermethrin Induced Toxicities in Fish and Adverse Health Outcomes: Its Prevention and Control Measure Adaptation. J. Environ. Manage. 2018, 206, 863–871. DOI: 10.1016/j.jenvman.2017.11.076.
  • Wendt, P.; Van Dolah, R.; Bobo, M.; Mathews, T.; Levisen, M. Wood Preservative Leachates from Docks in an Estuarine Environment. Arch. Environ. Contam. Toxicol. 1996, 31, 24–37. DOI: 10.1007/BF00203904.
  • Weis, J.; Weis, P.; Proctor, T. The Extent of Benthic Impacts of CCA-Treated Wood Structures in Atlantic Coast Estuaries. Arch. Environ. Contam. Toxicol. 1998, 34, 313–322. DOI: 10.1007/s002449900324.
  • Morais, S.; Fonseca, H. M.; Oliveira, S. M.; Oliveira, H.; Gupta, V. K.; Sharma, B.; de Lourdes Pereira, M. Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. IJERPH 2021, 18, 5518. DOI: 10.3390/ijerph18115518.
  • Hingston, J.; Collins, C.; Murphy, R.; Lester, J. Leaching of Chromated Copper Arsenate Wood Preservatives: A Review. Environ. Pollut. 2001, 111, 53–66. DOI: 10.1016/s0269-7491(00)00030-0.
  • Wong, O.; Harris, F. Retrospective Cohort Mortality Study and Nested Case-Control Study of Workers Exposed to Creosote at 11 Wood-Treating Plants in the United States. J. Occup. Environ. Med. 2005, 47, 683–697. DOI: 10.1097/01.jom.0000165016.71465.7a.
  • Pastorok, R. A.; Sampson, J. R.; Jacobson, M. A.; Peek, D. C. Ecological Risk Assessment for River Sediments Contaminated by Creosote. Environ. Toxicol. Chem. 1994, 13, 1929–1941. DOI: 10.1002/etc.5620131208.
  • Freeman, M. H.; Scientist-Chemist, I. W. PENTACHLOROPHENOL: An Update to the CWPA and Canadian Wood Treaters. CWPA 38th Annual Meeting Holiday Inn Toronto International Airport - October 25–26, 2017
  • Sánchez-Bayo, F. Insecticides Mode of Action in Relation to Their Toxicity to Non-Target Organisms. J. Environ. Anal. Toxicol. 2012, 4, S4–S002.
  • Bromilow, R. H.; Evans, A. A.; Nicholls, P. H. Factors Affecting Degradation Rates of Five Triazole Fungicides in Two Soil Types: 1. Laboratory Incubations. Pestic. Sci. 1999, 55, 1129–1134. DOI: 10.1002/(SICI)1096-9063(199912)55:12<1129::AID-PS72>3.0.CO;2-U.
  • Yen, J.-H.; Chang, J.-S.; Huang, P.-J.; Wang, Y.-S. Effects of Fungicides Triadimefon and Propiconazole on Soil Bacterial Communities. J. Environ. Sci. Health B 2009, 44, 681–689. DOI: 10.1080/03601230903163715.
  • Fernández-Calviño, D.; Rousk, J.; Bååth, E.; Bollmann, U. E.; Bester, K.; Brandt, K. K. Ecotoxicological Assessment of Propiconazole Using Soil Bacterial and Fungal Growth Assays. Appl. Soil Ecol. 2017, 115, 27–30. DOI: 10.1016/j.apsoil.2017.03.009.
  • Moser, V. C. Aldicarb. In Encyclopedia of Toxicology, 3rd ed., Wexler, P., Ed.; Elsevier: Amsterdam, 2014.
  • Guo, A.; Cooper, P. A.; Ung, T. Fixation and Leaching Characteristics of Acid Copper Chromate (ACC) Compared to Other Chromium-Based Wood Preservatives. For. Prod. J. 2005, 55, 72–75.
  • Sierra-Alvarez, R. Removal of Copper, Chromium and Arsenic from Preservative-Treated Wood by Chemical Extraction-Fungal Bioleaching. Waste Manage. 2009, 29, 1885–1891. DOI: 10.1016/j.wasman.2008.12.015.
  • Hwang, J-h.; Jeong, H.; Jung, Y-o.; Nam, K. T.; Lim, K.-M. Skin Irritation and Inhalation Toxicity of Biocides Evaluated with Reconstructed Human Epidermis and Airway Models. Food Chem. Toxicol. 2021, 150, 112064. DOI: 10.1016/j.fct.2021.112064.
  • Tascioglu, C.; Cooper, P.; Ung, T. Rate and Extent of Adsorption of ACQ Preservative Components in Wood. Holzforschung 2005, 59, 574–580.
  • Ung, Y. T.; Cooper, P. A. Copper Stabilization in ACQ-D Treated Wood: Retention, Temperature and Species Effects. Holz Roh Werkst 2005, 63, 186–191. DOI: 10.1007/s00107-004-0555-1.
  • Kim, J.-Y.; Kim, T.-S.; Eom, I.-Y.; Kang, S. M.; Cho, T.-S.; Choi, I. G.; Choi, J. W. Characterization of Pyrolytic Products Obtained from Fast Pyrolysis of Chromated Copper Arsenate (CCA)-and Alkaline Copper Quaternary Compounds (ACQ)-Treated Wood Biomasses. J. Hazard Mater. 2012, 227-228, 445–452. DOI: 10.1016/j.jhazmat.2012.05.052.
  • Kear, G.; Wú, H.-Z.; Jones, M. S. Weight Loss Studies of Fastener Materials Corrosion in Contact with Timbers Treated with Copper Azole and Alkaline Copper Quaternary Compounds. Corros. Sci. 2009, 51, 252–262. DOI: 10.1016/j.corsci.2008.11.012.
  • Loferski, J. R. Technologies for Wood Preservation in Historic Preservation. Arch. Mus. Inform. 1999, 13, 273–290. DOI: 10.1023/A:1012468326445.
  • Garabrant, D. H.; Bernstein, L.; Peters, J. M.; Smith, T. J. Respiratory and Eye Irritation from Boron Oxide and Boric Acid Dusts. J. Occup. Med. 1984, 26, 584–586. DOI: 10.1097/00043764-198408000-00013.
  • Fishel, F. M. Wood Preservatives: PI276, 7/2018. EDIS, 2018. DOI: 10.32473/edis-pi276-2018.
  • Morrell, J. J. Protection of Wood-Based Materials. In Handbook of Environmental Degradation of Materials; Elsevier: Amsterdam, 2018; pp 343–368.
  • De Groot, R. C. The Use of Naturally Durable Wood versus Treated Wood. Reprints-United States, Forest Service (USA), 1988.
  • Bigelow, J. J.; Clausen, C. A.; Lebow, S. T.; Greimann, L. Field Evaluation of Timber Preservation Treatments for Highway Applications; Iowa State University, Center for Transportation Research and Education: Ames, IA, 2007.
  • Härtner, H.; Cui, F. Performance of Impralit-KDS New Preservative, New Chemistry. CWPA Proceedings, 2007, pp 147–162.
  • Madsen, T.; Samsøe-Petersen, L.; Gustavson, K.; Rasmussen, D. Ecotoxicological Assessment of Antifouling Biocides and Nonbiocidal Antifouling Paints. Environ. Project 2000, 531, 112.
  • Singh, P.; Jain, R.; Srivastava, N.; Borthakur, A.; Pal, D.; Singh, R.; Madhav, S.; Srivastava, P.; Tiwary, D.; Mishra, P. K. Current and Emerging Trends in Bioremediation of Petrochemical Waste: A Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 155–201. DOI: 10.1080/10643389.2017.1318616.
  • Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. 2019, 28, 380–394. DOI: 10.1080/15320383.2019.1592108.
  • Kim, J.-Y.; Oh, S.; Park, Y.-K. Overview of Biochar Production from Preservative-Treated Wood with Detailed Analysis of Biochar Characteristics, Heavy Metals Behaviors, and Their Ecotoxicity. J. Hazard Mater. 2020, 384, 121356. DOI: 10.1016/j.jhazmat.2019.121356.
  • Helsen, L.; Van den Bulck, E. Review of Disposal Technologies for Chromated Copper Arsenate (CCA) Treated Wood Waste, with Detailed Analyses of Thermochemical Conversion Processes. Environ. Pollut. 2005, 134, 301–314. DOI: 10.1016/j.envpol.2004.07.025.
  • Pan, H. Effects of Liquefaction Time and Temperature on Heavy Metal Removal and Distribution in Liquefied CCA-Treated Wood Sludge. Chemosphere 2010, 80, 438–444. DOI: 10.1016/j.chemosphere.2010.04.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.