62
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A zero-waste one step method to produce carboxy nanocellulose from the untreated barley and wheat straws

ORCID Icon & ORCID Icon

References

  • Joseph, S. R.; Sandra, H. T. P.; Nair, A.; Chandran, S. A.; Ushamani, M. Cellulose Nanocrystals from Sugarcane Bagasse: Isolation, Characterization and Application. Cellulose Chem. Technol. 2023, 57, 37–47. DOI: 10.35812/CelluloseChemTechnol.2023.57.04.
  • Koshani, R.; van de Ven, T. G. M.; Madadlou, A. Characterization of Carboxylated Cellulose Nanocrytals Isolated through Catalyst-Assisted H2O2 Oxidation in a One-Step Procedure. J. Agric. Food Chem. 2018, 66, 7692–7700. DOI: 10.1021/acs.jafc.8b00080.
  • Beck-Candanedo, S.; Roman, M.; Gray, D. G. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules. 2005, 6, 1048–1054. DOI: 10.1021/bm049300p.
  • Mishra, S. P.; Manent, A.-S.; Chabot, B.; Daneault, C. The Use of Sodium Chlorite in Post Oxidation of TEMPO-Oxidized Pulp: Effect on Pulp Characteristics and Nanocellulose Yield. J. Wood Chem. Technol. 2012, 32, 137–148. DOI: 10.1080/02773813.2011.624666.
  • Sharma, P. R.; Zheng, B.; Sharma, S. K.; Zhan, C.; Wang, R.; Bhatia, S. R.; Hsiao, B. S. High Aspect Ratio Carboxycellulose Nanofibers Prepared by Nitro-Oxidation Method and Their Nanopaper Properties. ACS Appl. Nano Mater. 2018, 1, 3969–3980. DOI: 10.1021/acsanm.8b00744.
  • Sharma, P. R.; Chattopadhyay, A.; Sharma, S. K.; Hsiao, B. S. Efficient Removal of UO22+ from Water Using Carboxycellulose Nanofibers Prepared by the Nitro-Oxidation Method. Ind. Eng. Chem. Res. 2017, 56, 13885–13893. DOI: 10.1021/acs.iecr.7b03659.
  • Sharma, P. R.; Joshi, R.; Sharma, S. K.; Hsiao, B. S. A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass. Biomacromolecules. 2017, 18, 2333–2342. DOI: 10.1021/acs.biomac.7b00544.
  • Iglesias, M. C.; Shivyari, N.; Norris, A.; Martin-Sampedro, R.; Eugenio, M. E.; Lahtinen, P.; Auad, M. L.; Elder, T.; Jiang, Z.; Frazier, C. E.; Peresin, M. S. The Effect of Residual Lignin on the Rheological Properties of Cellulose Nanofibril Suspensions. J. Wood Chem. Technol. 2020, 40, 370–381. DOI: 10.1080/02773813.2020.1828472.
  • Rusin, C. J.; El Bakkari, M.; Du, R.; Boluk, Y.; McDermott, M. T. Plasmonic Cellulose Nanofibers as Water-Dispersible Surface-Enhanced Raman Scattering Substrates. ACS Appl. Nano Mater. 2020, 3, 6584–6597. DOI: 10.1021/acsanm.0c01045.
  • Cranston, E. D.; Gray, D. G.; Rutland, M. W. Direct Surface Force Measurements of Polyelectrolyte Multilayer Films Containing Nanocrystalline Cellulose. Langmuir. 2010, 26, 17190–17197. DOI: 10.1021/la1030729.
  • Hammiche, D.; Boukerrou, A.; Djidjelli, H.; Grohens, Y.; Bendahou, A.; Seantier, B. Characterization of Cellulose Nanowhiskers Extracted from Alfa Fiber and the Effect of Their Dispersion Methods on Nanocomposite Properties. J. Adhesion Sci. Tech. 2015, 30, 1899–1912. DOI: 10.1080/01694243.2016.1170586.
  • Yasuda, S.; Fukushima, K.; Kakehi, A. Formation and Chemical Structures of Acid-Soluble Lignin I: Sulfuric Acid Treatment Time and Acid-Soluble Lignin Content of Hardwood. J. Wood Sci. 2001, 47, 69–72. DOI: 10.1007/BF00776648.
  • El Oudiani, A.; Chaabouni, Y.; Msahli, S.; Sakli, F. Crystal Transition from Cellulose I to Cellulose II in NaOH Treated Agave Americana L. Fibre. Carbohydrate Polym. 2011, 86, 1221–1229. DOI: 10.1016/j.carbpol.2011.06.037.
  • Oh, S. Y.; Yoo, D. I.; Shin, Y.; Kim, H. C.; Kim, H. Y.; Chung, Y. S.; Park, W. H.; Youk, J. H. Crystalline Structure Analysis of cellulose treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. DOI: 10.1016/j.carres.2005.08.007.
  • Ewulonu, C. M.; Wang, H.; Liu, X.; Wu, M.; Huang, Y. Spectra and Crystallographic Analysis of Combined Ultrasonic and Mild Acid Hydrolysis Structural Effects on Lignin-Containing Cellulose Nanofibrils (LCNFs) and Cellulose Nanofibrils (CNFs). J. Wood Chem. Technol. 2022, 42, 125–135. DOI: 10.1080/02773813.2022.2036195.
  • Prathapan, R.; Thapa, R.; Garnier, G.; Tabor, R. F. Modulating the Zeta Potential of Cellulose Nanocrystals Using Salts and Surfactants. Colloids Surf, A. 2016, 509, 11–18. DOI: 10.1016/j.colsurfa.2016.08.075.
  • Sun, B.; Hou, Q.; Liu, Z.; Ni, Y. Sodium Periodate Oxidation of Cellulose Nanocrystal and Its Application as a Paper Wet Strength Additive. Cellulose. 2015, 22, 1135–1146. DOI: 10.1007/s10570-015-0575-5.
  • Obele, C. M.; Ibenta, M. E.; Chukwuneke, J. L.; Nwanonenyi, S. C. Carboxymethyl Cellulose and Cellulose Nanocrystals from Cassava Stem as Thickeners in Reactive Printing of Cotton. Cellulose. 2021, 28, 2615–2633. DOI: 10.1007/s10570-021-03694-0.
  • Cheng, H. N.; Kilgore, K.; Ford, C.; Fortier, C.; Dowd, M. K.; He, Z. Cottonseed Protein-Based Wood Adhesive Reinforced with Nanocellulose. J. Wood Chem. Technol. 2019, 33, 1357–1368. DOI: 10.1080/01694243.2019.1596650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.