12
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of hydrogen bonds on the reactivity of coniferous and deciduous dioxan lignins

, &

References

  • Bogolitsyn, K. G.; Lunin, V. V. Physical Chemistry of Lignin. Academkniga: Moscow, 2010; p. 492.
  • Heitner, C.; Dimmel, D.; Schmidt, J. A. Lignin and Lignans: Advances in Chemistry. CRS Press: Boca Raton, 2010; p. 683.
  • Sethupathy, S.; Morales, G. M.; Gao, L.; Wang, H.; Yang, B.; Jiang, J.; Sun, J.; Zhu, D. Lignin Valorization: Status, Challenges and Opportunities. Bioresour. Technol. 2022, 347, 126696. DOI: 10.1016/j.biortech.2022.126696.
  • Bogolitsyn, K. G.; Gusakova, M. A.; Khviyuzov, S. S.; Zubov, IN. Physicochemical Properties of Conifer Lignins Using Juniperus Communis as an Example. Chem. Nat. Compd. 2014, 50, 337–341. DOI: 10.1007/s10600-014-0946-4.
  • Bogolitsyn, K. G.; Khviuzov, S. S.; Gusakova, M. A.; Pustynnaya, M. A.; Krasikova, A. A. The Differences between Acid-Base and Redox Properties of Phenolic Structures of Coniferous and Deciduous Native Lignins. Wood Sci. Technol. 2018, 52, 1153–1164. DOI: 10.1007/s00226-018-1008-z.
  • Khviyuzov, S.; Bogolitsyn, K.; Volkov, A.; Koposov, G.; Gusakova, M. Features of Frequency Dependence of Electrical Conductivity and Dielectric Properties in Lignins from Conifers and Deciduous Trees. Holzforschung 2020, 74, 1113–1122. DOI: 10.1515/hf2019-0149.
  • Khviyuzov, S.; Gusakova, M.; Bogolitsyn, K.; Volkov, A. Diferences in the Physicochemical Properties of Lignins in the Heartwood and Sapwood of Pinus Sylvestris. J. Wood Chem. Technol. 2021, 41, 177–184. DOI: 10.1080/02773813.2021.1954951.
  • Bogolitsyn, K. G.; Khviyuzov, S. S. Features of Redox Properties of Phenolic Structures of Coniferous and Deciduous Lignins in the Solid and Liquid Phase. Polym. Bull. 2023, 80, 1001–1015. DOI: 10.1007/s00289-022-04323-x.
  • Bogolitsyn, K. G.; Gusakova, M. A.; Krasikova, A. A. Molecular Self-Organization of Wood Lignin-Carbohydrate Matrix. Planta 2021, 254, 30. DOI: 10.1007/s00425-021-03675-4.
  • Li, Q.; Dong, Y.; Hammond, K. D.; Wan, C. Revealing the Role of Hydrogen Bonding Interactions and Supramolecular Complexes in Lignin Dissolution by Deep Eutectic Solvents. J. Mol. Liquids 2021, 344, 117779. DOI: 10.1016/j.molliq.2021.117779.
  • Wohlert, M.; Benselfelt, T.; Wågberg, L.; Furó, I.; Berglund, L. A.; Wohlert, J. Cellulose and the Role of Hydrogen Bonds: Not in Charge of Everything. Cellulose 2022, 29, 1–23. DOI: 10.1007/s10570-021-04325-4.
  • Fengel, D. Characterization of Cellulose by Deconvoluting the OH Valency Range in FTIR Spectra. Holzforschung 1992, 46, 283–288. DOI: 10.1515/hfsg.1992.46.4.283.
  • Libowitzky, E. Correlation of O-H Stretching Frequencies and O-H…O Hydrogen Bond Lengths in Minerals. Monatsh. Chem. 1999, 130, 1047–1059. DOI: 10.1007/BF03354882.
  • Brauer, B.; Pincu, M.; Buch, V.; Bar, I.; Simons, J. P.; Gerber, B. R. Vibrational Spectra of α-Glucose, β-Glucose, and Sucrose: Anharmonic Calculations and Experiment. J. Phys. Chem. A 2011, 115, 5859–5872. DOI: 10.1021/jp110043k.
  • Ivanov-Omskii, V. I.; Zvonareva, T. K. Model of Cooperative Character of Hydrogen Bonds in Water. Tech. Phys. Lett. 2012, 38, 118–120. DOI: 10.1134/S1063785012020071.
  • Ivanov-Omskii, V. I. Characteristics of Hydrogen Bonds in D-Glucose. Tech. Phys. Lett. 2014, 40, 690–692. DOI: 10.1134/S1063785014080215.
  • Ivanova, E. I.; Gerasyuta, S. M.; Ivanov-Omskiy, V. I. Comparison of the Hydrogen Bonding Systems in Wood and Paper. Rus. Forestry J 2016, 1, 147–154. DOI: 10.17238/issn0536-1036.2016.1.147.
  • Kubo, S.; Kadla, J. F. Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study. Biomacromolecules 2005, 6, 2815–2821. DOI: 10.1021/bm050288q.
  • Obolenskaya, A. V.; El’nitskaya, Z. P.; Leonovich, A. L. Laboratory Studies of Wood and Cellulose Chemistry. Ecology: Moscow,1991, p.320.
  • Pepper, J. M.; Wood, P. D. S. The Isolation of a Representative Lignin Fraction from Wood and Straw Meals. Can. J. Chem. 1962, 40, . 6–1028. DOI: 10.1139/v62-153.
  • Zakis, G. F. Functional Analysis of Lignins and Their Derivatives. GaTAPPI Press: Atlanta, 1994; p. 94.
  • Sarkanen, K. V.; Ludwig, C. H. Lignins: Occurrence, Formation, Structure and Reactions. Wiley: New York, 1971, p. 916. DOI: 10.1002/pol.1972.110100315.
  • Lin, S. Y.; Dence, C. W. Methods in Lignin Chemistry. Springer-Verlag: Berlin, 1992, p. 578. DOI: 10.1007/978-3-642-74065-7.
  • Schwanninger, M.; Rodrigues, J. C.; Pereira, H.; Hinterstoisser, B. Effects of ShortTime Vibratory Ball Milling on the Shape of FTIR Spectra of Wood and Cellulose. Vib. Spectrosc. 2004, 36, 23–40. DOI: 10.1016/j.vibspec.2004.02.003.
  • Pandey, K. K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. DOI: 10.1002/(sici)1097-4628(19990321)71:123.0.co;2-d.
  • Davison, B. H.; Drescher, S. R.; Tuskan, G. A.; Davis, M. F.; Nghiem, N. P. Variation of S/G Ratio and Lignin Content in a Populus Family Influences the Release of Xylose by Dilute Acid Hydrolysis. Appl. Biochem. Biotechnol. 2006, 129-132, 427–435. DOI: 10.1385/ABAB:130:1:427.
  • Sykes, R.; Kodrzycki, B.; Tuskan, G.; Foutz, K.; Davis, M. Within Tree Variability of Lignin Composition in Populus. Wood Sci. Technol. 2008, 42, 649–661. DOI: 10.1007/s00226-008-0199-0.
  • Rodrigues, J.; Meier, D.; Faix, O.; Pereira, H. Determination of Tree to Tree Variation in Syringyl/Guaiacyl Ratio of Eucalyptus Globulus Wood Lignin by Analytical Pyrolysis. J. Anal. Appl. Pyrolysis 1999, 48, 121–128. DOI: 10.1016/S0165-2370(98)00134-X.
  • Faix, O. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–28. DOI: 10.1515/hfsg.1991.45.s1.21.
  • Baucher, M.; Monties, B.; Montagu, M. V.; Boerjan, W. Biosynthesis and Genetic Engineering of Lignin. Crit. Rev. Plant Sci. 1998, 17, 125–197. DOI: 10.1080/07352689891304203.
  • Balakshin, M.; Capanema, E. On the Quantification of Lignin Hydroxyl Groups with 31P and 13C NMR. J. Wood Chem. Technol. 2015, 35, 220–237. DOI: 10.1080/02773813.2014.928328.
  • Faleva, A. V.; Kozhevnikov, A. Y.; Pokryshkin, S. A.; Falev, D. I.; Shestakov, S. L.; Popova, J. A. Structural Characteristics of Different Softwood Lignins according to 1D and 2D NMR Spectroscopy. J. Wood Chem. Technol. 2020, 40, 178–189. DOI: 10.1080/02773813.2020.1722702.
  • Månsson, P. Quantitative Determination of Phenolic and Total Hydroxyl Groups in Lignins. Holzforschung 1983, 37, 143–146. DOI: 10.1515/hfsg.1983.37.3.143.
  • Hu, Y.; Zuo, L.; Liu, J.; Sun, J.; Wu, S. Chemical Simulation and Quantum Chemical Calculation of Lignin Model Compounds. BioRes 2016, 11, 1044–1060. DOI: 10.15376/biores.11.1.1044-1060.
  • Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin, J.; Awasthi, M. K.; Sarsaiya, S. A Review on Systematic Study of Cellulose. JANS. 2010, 2, 330–343. DOI: 10.31018/jans.v2i2.143.
  • Hishikawa, Y.; Togawa, E.; Kondo, T. Characterization of Individual Hydrogen Bonds in Crystalline Regenerated Cellulose Using Resolved Polarized FTIR Spectra. ACS Omega. 2017, 2, 1469–1476. DOI: 10.1021/acsomega.6b00364.
  • Cichosz, S.; Masek, A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials (Basel) 2020, 13, 4573. DOI: 10.3390/ma13204573.
  • Ragnar, M.; Lindgren, C. T.; Nilvebrant, N. O. pKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000, 20, 277–305. DOI: 10.1080/02773810009349637.
  • Karmanov, A. P.; Monakov, Y. B. Lignin. Structural Organisation and Fractal Properties. Russ. Chem. Rev. 2003, 72, 715–734. DOI: 10.1070/RC2003v072n08ABEH000767.
  • Jahan, N.; Huda, M. M.; Tran, Q. X.; Rai, N. Effect of Solvent Quality on Structure and Dynamics of Lignin in Solution. J. Phys. Chem. B 2022, 126, 5752–5764. DOI: 10.1021/acs.jpcb.2c03147.
  • Vermaas, J. V.; Crowley, M. F.; Beckham, G. T. Molecular Lignin Solubility and Structure in Organic Solvents. ACS Sustainable Chem. Eng. 2020, 8, 17839–17850. DOI: 10.1021/acssuschemeng.0c07156.
  • Hibbert, F.; Emsley, J. Hydrogen Bonding and Chemical Reactivity. Adv. Phys. Org. Chem 1990, 26, 255–379. DOI: 10.1016/S0065-3160(08)60047-7.
  • Khviyuzov, S. S.; Kosyakov, D. S.; Bogolitsyn, K. G.; Gorbova, N. S. The Effect of Molecular Weight on the Acid-Base Properties of Sulfate Lignin in the Water – Dimethyl Sulfoxide System. Khimija Rastitel’nogo Syr’ja 2009, 2, 47–51.
  • Kosyakov, D. S.; Hviyuzov, S. S.; Gorbova, N. S.; Bogolitsyn, K. G. Protolytic Properties of Lignin in Binary Mixtures of Water with Aprotic Solvents. Russ. J. Appl. Chem. 2013, 86, 1064–1069. DOI: 10.1134/S1070427213070197.
  • Kawamoto, H. Lignin Pyrolysis Reactions. J. Wood Sci. 2017, 63, 117–132. DOI: 10.1007/s10086-016-1606-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.