2,050
Views
50
CrossRef citations to date
0
Altmetric
Original Article

Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM

, , &
Pages 1393-1405 | Received 01 Jun 2013, Accepted 09 Sep 2013, Published online: 10 Oct 2013

REFERENCES

  • Adachi, K., Chung, S.H., Friedrich, H., and Buseck, P.R. (2007). Fractal Parameters of Individual Soot Particles Determined Using Electron Tomography: Implications for Optical Properties. J. Geophys. Res. 112:D14202.
  • Berry, M.V., and Percival, I.C. (1986). Optics of Fractal Clusters Such as Smoke. Optica Acta, 33:577–591.
  • Bohren, C.F., and Huffman, D.R. (1983). Absorption and Scattering of Light by Small Particles. Wiley, New York.
  • Brasil, A.M., Farias, T.L., and Carvalho, M.G. (2000). Evaluation of the Fractal Properties of Cluster-Cluster Aggregates. Aerosol Sci. Tech., 33:440–454.
  • Brown, D.M., Wilson, M.R., MacNee, W., Stone, V., and Donaldson, K. (2001). Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicol. Appl. Pharmacol., 175:191–199.
  • Cai, J., Lu, N., and Sorensen, C.M. (1995). Analysis of Fractal Cluster Morphology Parameters: Structural Coefficient and Density Autocorrelation Function Cutoff. J. Colloid Interface Sci., 171:470–473.
  • Cross, E. S., Onasch T. B., Ahern, A., Wrobel W., Slowik, J. G., Olfert, J., et al. (2010). Soot Particle Studies—Instrument Inter-Comparison—Project Overview, Aerosol Sci. Tech., 44:592–611.
  • Dobbins, R.A., and Megaridis, C.M. (1991). Absorption and Scattering of Light by Polydisperse Aggregates. Appl. Optics, 30:4747–4754.
  • Farias, T.L., Carvalho, M.G., Köylü, Ü.Ö., and Faeth, G.M. (1995). Computational Evaluation of Approximate Rayleigh-Debye-Gans/Fractal-Aggregate Theory for the Absorption and Scattering Properties of Soot. ASME J. Heat Transfer, 117:152–159.
  • Farias, T.L., Köylü, Ü.Ö., and Carvalho, M.G. (1996). Range of Ralidity of the Rayleigh-Debye-Gans Theory for Optics of Fractal Aggregates. Appl. Opt., 35:6560–6567.
  • Filippov, A.V., Zurita, M., and Rosner, D.E. (2000). Fractal-Like Aggregates: Relation Between Morphology and Physical Properties. J. Colloid Interface Sci., 229:261–273.
  • Forrest, S.R., and Witten Jr., T.A. (1979). Long-Range Correlations in Smoke-Particle Aggregates. J. Phys. A: Math. Gen., 12:L109–L117.
  • Gmachowski, L. (2002). Calculation of the Fractal Dimension of Aggregates. Colloids Surf. A, 211:197–203.
  • Hasmy, A., Foret, M., Pelous, J., and Jullien, R. (1993). Small-Angle Neutron-Scattering Investigation of Short-Range Correlations in Fractal Aerosols: Simulations and Experiments. Phys. Rev. B, 48:9345–9353.
  • Heinson, W.R., Sorensen, C.M., and Chakrabarti, A. (2012). A Three Parameter Description of the Structure of Diffusion Limited Cluster Fractal Aggregates. J. Colloid Interface Sci., 375:65–69.
  • Jacobson, M.Z. (2001). Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols. Nature, 409:695–697.
  • Johnson, D.W., Kilsby, C.G., McKenna, D.S., Saunders, R.W., Jenkins, G.J., Smith, F.B., et al. (1991). Airborne Observations of the Physical and Chemical Characteristics of the Kuwait Oil Smoke Plume. Nature, 353:617–621.
  • Jullien, R., and Botet, R. (1987). Aggregation and Fractal Aggregates. World Scientific, Singapore.
  • Kazakov, A., and Frenklach, M. (1998). Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames. Combust. Flame, 114:484–501.
  • Kerker, M. (1969). The Scattering of Light. Academic Press, New York, pp. 414–486.
  • Khlebtsov, N.G. (1992). Orientational Averaging of Light-Scattering Observables in the T-Matrix Approach. Appl. Opt., 31:5359–5365.
  • Köylü, Ü.Ö., and Faeth, G.M. (1993). Radiative Properties of Flame-Generated Soot. ASME J. Heat Transfer, 115:409–417.
  • Köylü, Ü.Ö., and Faeth, G.M. (1994). Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Time. ASME J. Heat Transfer, 116:152–159.
  • Köylü, Ü.Ö., Xing, Y., and Rosner, D.E. (1995). Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscopic Images. Langmuir, 11:4848–4854.
  • Lack, D.A., and Cappa, C.D. (2010). Impact of Brown and Clear Carbon on Light Absorption Enhancement, Single Scatter Albedo and Absorption Wavelength Dependence of Black Carbon. Atmo. Chem. Phys. Discussions, 10:785–819.
  • Lapuerta, M., Ballesteros, R., and Martos, F.J. (2006). A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates. J. Colloid Interface Sci., 303:149–158.
  • Liu, L., Mishchenko, M.I., and Arnott, W.P. (2008). A Study of Radiative Properties of Fractal Soot Aggregates Using the Superposition T-Matrix Method. JQSRT, 109:2656–2663.
  • Liu, F., and Smallwood, G.J. (2010a) Radiative Properties of Numerically Generated Fractal Soot Aggregates: The Importance of Configuration Averaging. ASME J. Heat Transfer, 132: 023308-1–023308-6.
  • Liu, F., and Smallwood, G.J. (2010b). Effect of Aggregation on the Absorption Cross Section of Fractal Soot Aggregates and Its Impact on LII Modelling. JQSRT, 111:302–308.
  • Liu, F., and Snelling, D.R. (2008). Evaluation of the Accuracy of the RDG Approximation for the Absorption and Scattering Properties of Fractal Aggregates of Flame-Generated Soot. . 40th Thermophysics Conference, AIAA 2008–4362, Seattle, Washington.
  • Liu, F., Snelling, D.R., and Smallwood, G.J. (2009). Effects of the Fractal Prefactor on the Optical Properties of Fractal Soot Aggregates. . MNHMT2009-18473, ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, Shanghai, China.
  • Mikhailov, E. F., Vlasenko, S. S., Krämer, L., and Niessner, R. (2001). Interaction of Soot Aerosol Particles with Water Droplets: Influence of Surface Hydrophilicity. J. Aerosol Sci., 32:697–711.
  • Mishchenko, M.I. (1991). Light Scattering by Randomly Oriented Axially Symmetric Particles. J. Opt. Soc. Am. A, 8:871–882.
  • Mishchenko, M.I., Videen, G., Khlebtsov, G., Wriedt, T., and Zakharova, N.T. (2008). Comprehensive T-Matrix Reference Database: A 2006–2007 Update. JQSRT, 109:1447–1460.
  • Mulholland, G.W., Bohren, C.F., and Fuller, K.A. (1994). Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method. Langmuir, 10:2533–2546.
  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C. (2004). Translocation of Inhaled Ultrafine Particles to the Brain. Inhalat. Toxicol., 16:437–445.
  • Oh, C. and Sorensen, C.M. (1997). The Effect of Overlap Between Monomers on the Determination of Fractal Cluster Morphology. J. Colloid Interface Sci., 193:17–25.
  • Ouf, F.X., Yon, J., Ausset, P., Coppalle, A., and Maille, M. (2010). Influence of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by Transmission Electron Microscopy. Aerosol Sci. Tech., 44:1005–1017.
  • Reid, J.S., and Hobbs, P.V. (1998). Physical and Optical Properties of Young Smoke from Individual Biomass Fires in Brazil. J. Geophys. Res., 103:32013–32030.
  • Singham, S.B., and Bohren, C.F. (1993). Scattering of Unpolarized and Polarized Light by Particle Aggregates of Different Size and Fractal Dimension. Langmuir, 9:1431–1435.
  • Sorensen, C.M. (2001). Light Scattering by Fractal Aggregates: A Review. Aerosol Sci. Tech., 35:648–687.
  • Sorensen, C.M., Cai, J., and Lu, N. (1992). Test of Static Structure Factors for Describing Light Scattering from Fractal Soot Aggregates. Langmuir, 8:2064–2069.
  • Sorensen, C.M., and Feke, G.D. (1996). The Morphology of Macroscopic Soot. Aerosol. Sci. Tech., 25:328–337.
  • Sorensen, C.M., and Roberts, G.C. (1997). The Prefactor of Fractal Aggregates. J. Colloid Interface Sci., 186:447–452.
  • Van-Hulle, P., Weill, M.-E., Talbaut, M., and Coppalle, A. (2002). Comparison of Numerical Studies Characterizing Optical Properties of Soot Aggregates for Improved EXSCA Measurements. Part. Part. Syst. Charact., 19: 47–57.
  • Xu, Y.-L. (1995). Electromagnetic Scattering by an Aggregate of Spheres. Applied Optics, 34: 4573–4588.
  • Xu, Y.-L. (1997). Electromagnetic Scattering by an Aggregate of Spheres: Far Field. Applied Optics, 36: 9496–9508.
  • Xu, Y.-L., and Khlebtsov, N.G. (2003). Orientation-Averaged Radiative Properties of an Arbitrary Configuration of Scatterers. JQSRT, 79–80: 1121–1137.
  • Yang, B., and Köylü, Ü.Ö. (2005). Soot Processes in a Strongly Radiating Turbulent Flame from Laser Scattering/Extinction Experiments. JQSRT, 93:289–299.
  • Yon, J., Roze, C., Girasole, T., Coppalle, A., and Mees, L. (2008). Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers. Part. Part. Syst. Char., 25:54–67.
  • Zhang, R., Khalizov, A.F., Pagels, J., Zhang, D., Xue, H., and McMurry, P.H. (2008). Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols During Atmospheric Processing. PNAS, 105:10291–10295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.