2,449
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Facile Method for Determining the Aspect Ratios of Mineral Dust Aerosol by Electron Microscopy

&
Pages 715-724 | Received 19 Feb 2014, Accepted 23 Apr 2014, Published online: 25 Jun 2014

REFERENCES

  • Adachi, K., Chung, S. H., Friedrich, H., and Buseck, P. R. (2007). Fractal Parameters of Individual Soot Particles Determined using Electron Tomography: Implications for Optical Properties. J. Geophys. Res., 112:D14202, doi:10.1029/2006JD008296.
  • Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., et al. (2013). Formation of Highly Porous Aerosol Particles by Atmospheric Freeze-Drying In Ice Clouds. Proc. Nat. Acad. Sci. USA, 110:20414–20419.
  • Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., et al. (2013). The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature, 498:355–358.
  • Becket, R., Murphy, D., Tadjiki, S., Chittleborough, D., and Giddings, J. (1997). Determination of Thickness, Aspect Ratio and Size Distributions for Platey Particles using Sedimentation Field-Flow Fractionation and Electron Microscopy. Colloid Surface A: Physicochem. Eng. Aspects, 120:17–26.
  • Bereznitski, Y., Jaroniec, M., and Maurice, P. (1998). Adsorption Characterization of Two Clay Minerals Society Standard Kaolinites. J. Colloid Interface Sci., 205:528–530.
  • Bickmore, B., Nagy, K., Sandlin, P., and Crater, T. (2002). Quantifying Surface Area of Clays by Atomic Force Microscopy. Am. Mineral., 87:780–783.
  • Brantley, S. L., and Mellott, N. P. (2000). Surface Area and Porosity of Primary Silicate Mineral. Am. Mineral., 85:1767–1783.
  • Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., et al. (2012). Immersion Mode Heterogeneous Ice Nucleation by an Illite Rich Powder Representative of Atmospheric Mineral Dust. Atmos. Chem. Phys., 12:287–307.
  • Brunauer, S., Emmett. P. H., and Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60(2):309–319.
  • Cahill, C. F. (2003). Asian Aerosol Transport to Alaska During ACE-Asia. J. Geophys. Res., 108(D23):8664, doi: 10.1029/2002JD003271.
  • Chen, H., Grassian, V. H., Laxmikant, S. V., and Laskin, A. (2013). Chemical Imaging Analysis of Environmental Particles using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash. Analyst, 138:451–460.
  • Chipera, S. J., and Bish, D. L. (2001). Baseline Studies of the Clay Minerals Society Source Clays: Powder x-Ray Diffraction Analyses. Clay Clay Miner., 49(5):398–409.
  • Clayton, T., and Pearce, R. B. (2007). Rapid Chemical Analysis of the <2 μm Clay Fraction using an SEM/EDS Technique. Clay Miner., 42:549–562.
  • Conny, J. M. (2013). Internal Composition of Atmospheric Dust Particles from Focused Ion-Beam Scanning Electron Microscopy. Environ. Sci. Technol., 47:8575–8581.
  • Dentener, F., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J. (1996). Role of Mineral Aerosol as a Reactive Surface in the Global Troposphere. J. Geophys. Res., 101(D17):22869–22889, doi: 10.1029/96JD01818.
  • Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., et al. (2006). Emissions of Primary Aerosol and Precursor Gases in the Years 2000 and 1750, Prescribed Data-Sets for AeroCom. Atmos. Chem. Phys., 6:2703–2763.
  • Fairlie, T. D., Jacob, D., and Park, R. J. (2007). The Impact of Transpacific Transport of Mineral Dust in the United States. Atmos. Environ., 41:1251–126.
  • Fischer, E.V., Jaffe, D. A., Marley, N. A., Gaffney J. S., and Marchany-Rivera, A. (2010). Optical Properties of Aged Asian Aerosols Observed Over the U.S. Pacific Northwest. J. Geophys. Res., 115:D20209, doi: 10.1029/2010JD013943.
  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in Atmospheric Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, H. Miller, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., et al. (2001). Sources and Distributions of Dust Aerosol Simulated with the GOCART Model. J. Geophys. Res., 106(D17):20255–20273, doi: 10.1029/2000JD000053.
  • Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M. (2012). Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based upon MODIS Deep Blue Aerosol Products. Rev. Geophys., 50:RG3005. doi:10.1029/2012RG000388.
  • Grim, R. E. (1968). Clay Mineralology, 2nd ed. McGraw-Hill, New York.
  • Haapanala, P., Raisanen, P., Kahnert, M., and Nousiainen, T. (2012). Sensitivity of the Shortwave Radiative Effect of Dust on Particle Shape: Comparison of Spheres and Spheroids. J. Geophys. Res., 117:D08201, doi:10.1029/2011JD017216.
  • Hackley, V. A., and Stefaniak, A. B. (2013). “Real-World” Precision, bias, and Between-Laboratory Variation for Surface Area Measurement of a Titianium Dioxide Nanomaterial in Powder Form. J. Nanopart. Res., 15:1742.
  • Haynes, W. M., Ed. (2013). CRC Handbook of Chemistry and Physics, 94th ed. CRC Press: Boca Raton, FL.
  • Hiranuma, N., Brooks, S. D., Moffet, R. C., Glen, A., Laskin, A., Gilles, M. K., et al. (2013). Chemical Characterization of Individual Particles and Residuals of Clud Drolets and Ice Crystals Collected on Board Research Aircraft in the ISDAC 2008 Study. J. Geophys. Res. Atmos., 118:6564–6579, doi: 10.1002/jgrd.50484.
  • Hofmann, V., Boehm, H. P., and Gromes, W. (1961). Die Abmessungen der Kristalle der Tonminerale. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 308:143–154.
  • Hoose, C., and Möhler, O. (2012). Heterogeneous Ice Nucleation on Atmospheric Aerosols: A Review of Results From Laboratory Experiments. Atmo. Chem. Phys., 12:9817–9854.
  • Hudson, P. K., Gibson, E. R., Young, M. A., Kleiber, P. D., and Grassian, V. H. (2008). Coupled Infrared Extinction and Size Distribution Measurements for Several Clay Components of Mineral Dust Aerosol. J. Geophys. Res., 113:D01201, doi:10.1029/2007JD008791.
  • Inoue, A., and Kitagawa, R. (1994). Morphological Characteristics of Illitic Clay Minerals from a Hydrothermal System. Am. Mineral., 79:700–711.
  • Jepson, W., and Rowse, J. (1975). The Composition of kaolinite – An Electron Microscope Microprobe Study. Clay Clay Mineral., 23:310–317.
  • Johnson, B., Christopher, S., Haywood, J., Osborne, S., McFarlane, S., Hsu, C., et al. (2009). Measurements of Aerosol Properties from Aircraft, Satellite and Ground-Based Remote Sensing: A Case-Study from the Dust and Biomass-Burning Experiment (DABEX). Q. J. R. Meteorol. Soc., 135:922–934.
  • Johnson, M., Meskhidze, N., and Kiliyanpilakkil, P. (2012). A Global Comparison of GEOS-Chem-Predicted and Remotely-Sensed Mineral Dust Aerosol Optical Depth and Extinction Profiles. J. Adv. Model. Earth Sys., 4:M07001, doi:10.1029/2011MS000109.
  • Kahnert, F. M. (2004). Reproducing the Optical Properties of Fine Desert Dust Aerosols using Ensembles of Simple Model Particles. J. Quant. Spectrosc. Radiat. Transfer, 85:231–249.
  • Kok, J. F. (2011). A Scaling Theory for the Size Distribution of Emitted Dust Aerosols Suggests Climate Models Underestimate the Size of the Global Dust Cycle. Proc. Natl. Acad. Sci., 108(3):1016–1021.
  • Krueger, B. J., Grassian, V. H., Iedema, M. J., Cowin, J. P., and Laskin, A. (2003). Probing Heterogeneous Chemistry of Individual Atmospheric Particles using Scanning Electron Microscopy and Energy-Dispersive x-Ray Analysis. Anal. Chem., 75:5170–5179.
  • Laird, D. (2001). Nature of Clay-Humic Complexes in an Agricultural Soil: II. Scanning Electron Microscopy Analysis. Soil Sci. Soc. Am. J., 65:1419–1425.
  • Lindgreen, H., Garnaes, J., Hansen, P., Besenbacher, F., Laegsgaard, E., Stensgaard, I., et al. (1991). Ulatrafine Particles of North Sea Illite/Smectite Clay Minerals Investigated by STM and AFM. Am. Mineral., 76: 1218–1222.
  • Lindqvist, H., Jokinen, O., Kandler, K., Scheuvens, D., and Nousiainen, T. (2014). Single Scattering by Realistic, Inhomogeneous Mineral Dust Particles with Stereogrammetric Shapes. Atmos. Chem. Phys., 14:143–157.
  • Liu, T. (1985). Loess in China. China Ocean Press, Beijing.
  • Madsen, F.T. (1977). Surface area measurements of clay minerals by glycerol sorption on a thermobalance. Thermochim. Acta, 21:89–93.
  • Martin, R. T., Bailey, S. W., Eberl, D. D., Fanning, D. S., Guggenheim, S., Kodama, H., et al. (1991). Report of the Clay Minerals Society Nomenclature Committee: Revised Classification of Clay Materials. Clay Clay Mineral, 39(3):333–335.
  • McNaughton, S., Clarke, A., Kapustin, V., Shinozuka, Y., Howell, S., Anderson, B., et al. (2009). Observations of Heterogeneous Reactions Between Asian Pollution and Mineral Dust Over Eastern North Pacific During INTEX-B. Chem. Phys., 2:8469–8539.
  • Merikallio, S., Lindqvist, H., Nousiainen, T., and Kahner, M. (2011). Modelling Light Scattering by Mineral Dust using Spheroids: Assessment of Applicability. Atmos. Chem. Phys., 11:5347–5363.
  • Metz, V., Raanan, H., Pieper, H., Bosback, D., and Ganor, J. (2005). Toward the Establishment of a Reliable Proxy of the Reactive Surface Area of Smectite. Geochimica et Cosmochimica Acta 69(10):2581–2591.
  • Moore, D. M., and Reynolds, R. C., Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. Oxford University Press, New York.
  • Nadeau, P. H. (1985). The Physical Dimensions of Fundamental Clay Particles. Clay Mineral, 20:499–514.
  • Nadeau, P. H. (1987). Relationships Between the Mean Area, Volume and Thickness for Dispersed Particles of Kaolinites and Micaceous Clays and Their Application to Surface Area and Ion Exchange Properties. Clay Mineral, 22:351–356.
  • Nousiainen, T., Kahnert, M., and Veihelmann, B. (2006). Light Scattering Modeling of Small Feldspar Aerosol Particles using Polyhedral Prisms and Spheroids. J. Quant. Spectrosc. Radiat. Transfer, 101:471–487, doi: 10.1016/j.jqsrt.2006.02.038.
  • Pinti, V., Marcolli, C., Zobrist, B., Hoyle, C. R., and Peter, T. (2012). Ice Nucleation Efficiency of Clay Minerals in the Immersion Mode. Atmos. Chem. Phys., 12:5859–5878.
  • Pruett, R. J., and Webb, H. L. (1993). Sampling and Analysis of KGa-1b Well-Crystallized Kaolin Source Clay. Clay Clay Mineral, 41:514–519.
  • Robertson, R. H. S., Brindley, G. W., and Mackenzie, R. C. (1954). Mineralogy of Kaolin Clays from Pugu. Tanganyika, Am. Mineral., 39:118–138.
  • Sanders, R. L., Washton, N. M., and Mueller, K. T. (2010). Measurement of the Reactive Surface Area of Clay Minerals using Solid-State NMR Studies of a Probe Molecule. J. Phys. Chem. C, 114:5491–5498.
  • Schleicher, B., Jung, T., and Burtscher, H. (1993). Characterization of Ultrafine Aerosol Particles Adsorbed on Highly Oriented Pyrolytic Graphite by Scanning Tunneling and Atomic Force Microscopy. J. Colloid Interface Sci., 161:271–277.
  • Schuttlefield, J. D., Cox, D., and Grassian, V. H.(2007). An Investigation of Water Uptake on Clays Minerals using ATR-FTIR Spectroscopy Coupled with Quartz Crystal Microbalance Measurements. J. Geophys. Res., 112:D21303 doi:10.1029/2007JD008973.
  • Siegesmund, S., Weiss, T., and Vollbrecht, A. (2002). Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Geological Society, Vol. 205. Special Publications, London, pp. 137–147.
  • Steudel, A., Batenburg, L. F., Fischer, H. R., Weidler, P. G., and Emmerich, K. (2009). Alteration of Non-Swelling Clay Minerals and Magadiite by Acid Activation. Appl. Clay Sci., 44:95–104.
  • Tumolva, L., Park, J., and Park, K. (2012). Combination of Transmission Electron and Atomic Force Microscopy Techniques to Determine Volume Equivalent Diameter of Submicrometer Particles. Microsc. Res. Techniq., 17:505–512.
  • van Olphen, H, and Fripiat, J.J. (1979). Data Handbook for Clay Materials and Other Nonmetallic Minerals. Pergamon, New York.
  • van Poppel, L. H., Friedrich, H., Spinsby, J., Chung, S. H., Seinfeld, J. H., and Buseck, P. R. (2005). Electron Tomography of Nanoparticle Clusters: Implications for Atmospheric Lifetimes and Radiative Forcing of Soot. Geophys. Res. Lett., 32:L24811, doi:10.1029/2005GL024461.
  • Wang, B., Laskin, A., Roedel, T., Gilles, M. K., Moffet, R. C., Tivanski, A. V., et al. (2012). Heterogeneous Ice Nucleation and Water Uptake by Field-Collected Atmospheric Particles Below 273 K. J. Geophys. Res., 117:D00V19, doi: 10.1029/2012JD017446.
  • Zhao, T., Gong, S., Zhang, X., and McKendry, I. (2003). Modeled Size-Segregated Wet and Dry Deposition Budges of Soil Dust Aerosol During ACE-Asia 2001: Implications for Trans-Pacific Transport. Geophys. Res., 10:D23, doi: 10.1029/2002JD003363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.