2,719
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The Single-Fiber Collision Rate and Filtration Efficiency for Nanoparticles I: The First-Passage Time Calculation Approach

, &
Pages 875-885 | Received 24 Sep 2013, Accepted 10 Jun 2014, Published online: 11 Aug 2014

REFERENCES

  • Ahn, Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G., Shin, H.S. et al. (2006). Development of High Efficiency Nanofilters Made of Nanofibers. Curr. Appl. Phys., 6:1030–1035.
  • Allen, J.E. (1992). Probe Theory–The Orbital Motion Approach. Phys. Scripta 45:497–503.
  • Balazy, A., and Podgorski, A. (2007). Deposition Efficiency Of Fractal-Like Aggregates in Fibrous Filters Calculated Using Brownian Dynamics Method. J Colloid. Interf. Sci. 311:323–337.
  • Balazy, A., and Podgorski, A. (2008). Verification of the Classical Theory of Aerosol Depth Filtration. Chem. Proc. Eng.Inz. Chem. I Procesowa 29:361–374.
  • Brown, R.C., and Wake, D. (1991). Air Filtration by Interception—Theory and Experiment. J. Aerosol Sci. 22:181–186.
  • Dahneke, B.E. (1983). Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols, in Theory of Dispersed Multiphase Flow, R.E. Meyer, ed., Academic Press, New York.
  • Davies, C.N. (1945). Definitive Equations for the Fluid Resistance of Spheres. Proc. Phys. Soc., 57:259–270.
  • Davies, C.N. (1952). The Separation of Airborne Dust Particles. Proc. Inst. Mech. Eng. B, 1:185–198.
  • Dhaniyala, S., and Liu, B.Y. H. (1999). An Asymmetrical, Three-Dimensional Model for Fibrous Filters. Aerosol Sci. Technol. 30:333–348.
  • Dhaniyala, S., and Liu, B.Y. H. (2001a). Experimental Investigation of Local Efficiency Variation in Fibrous Filters. Aerosol Sci. Technol. 34:161–169.
  • Dhaniyala, S. and Liu, B.Y. H. (2001b). Theoretical Modeling of Filtration by Nonuniform Fibrous Filters. Aerosol Sci. Technol., 34:170–178.
  • Emi, H., Kanaoka, C., and Kuwabara, Y. (1982). The Diffusion Collection Efficiency of Fibers for Aerosol Over a Wide Range of Reynolds Numbers. J. Aerosol Sci. 13:403–413.
  • Ermak, D.L., and Buckholz, H. (1980). Numerical-Integration of the Langevin Equation - Monte-Carlo Simulation. J Comput. Phys. 35:169–182.
  • Friedlander, S.K. (1957). Mass and Heat Transfer to Single Spheres and Cylinders at Low Reynolds Numbers. AIChE J., 3:43–48.
  • Friedlander, S.K. (2000). Smoke, Dust, and Haze. Oxford University Press, New York.
  • Fuchs, N.A. (1963). On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Atmosphere. Geofis. Pura Appl., 51:185–193.
  • Fuchs, N.A. (1964). The mechanics of aerosols. Macmillan, New York.
  • Fuchs, N.A., and Sutugin, A.G. (1970). Highly dispersed aerosols. Ann Arbor Science Publishers, Ann Arbor,.
  • Gopalakrishnan, R., and Hogan, C.J. (2011). Determination of the Transition Regime Collision Kernel from Mean First Passage Times. Aerosol Sci. Technol. 45:1499–1509.
  • Gopalakrishnan, R., Thajudeen, T., and Hogan, C.J. (2011). Collision Limited Reaction Rates for Arbitrarily Shaped Particles Across the Entire Diffusive Knudsen Number Range. J. Chem. Phys. 135.
  • Gopalakrishnan, R., Thajudeen, T., Ouyang, H., and Hogan Jr, C.J. (2013). The Unipolar Diffusion Charging of Arbitrary Shaped Aerosol Particles. J. Aerosol Sci. 64:60–80.
  • Gupta, D., and Peters, M.H. (1985). A Brownian Dynamics Simulation of Aerosol Deposition Onto Spherical Collectors. J. Colloid Interfac. Sci. 104:375–389.
  • Happel, J. (1959). Viscous flow relative to arrays of cylinders. AIChE J. 5:174–177.
  • Hinds, W.C. (1999). Aerosol Technology, 2nd ed. John Wiley and Sons, Inc., New York.
  • Kirsch, A.A., and Fuchs, N.A. (1968). Studies on Fibrous Aerosol Filters—III Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 11:299–304.
  • Kirsch, A.A., Stechkina, I.B., and Fuchs, N.A. (1974). Gas Flow in Aerosol Filters Made of Polydisperse Ultrafine Fibres. J. Aerosol Sci. 5:39–45.
  • Kuwabara, S. (1959). The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. J. Phy. Soc. Japan 14:527–532.
  • Lamb, H. (1932). Hydrodynamics. Cambridge University Press, Cambridge, UK.
  • Lee, K.W. and Liu, B.Y. H. (1982a). Experimental-Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1:35–46.
  • Lee, K.W. and Liu, B.Y. H. (1982b). Theoretical-Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1:147–161.
  • Lindquist, G.J., Pui, D.Y. H., and Hogan Jr, C.J. (2014). Porous Particulate Film Deposition in the Transition Regime. J. Aerosol Sci. 74:42–51.
  • Mott-Smith, H.M., and Langmuir, I. (1926). The Theory of Collectors in Gaseous Discharges. Phys. Rev. 28:727–763.
  • Narsimhan, G., and Ruckenstein, E. (1985). Monte-Carlo Simulation of Brownian Coagulation over the Entire Range of Particle Sizes from near Molecular to Colloidal – Connection between Collision Efficiency and Interparticle Forces. J. Colloid Interf. Sci. 107:174–193.
  • Ouyang, H., Gopalakrishnan, R. and Hogan, C.J. (2012). Nanoparticle Collisions in the Gas Phase in the Presence of Singular Contact Potentials. The J. Chem. Phys. 137:064316.
  • Pich, J. (1966). Chapter IX., in Aerosol Science, C.N. Davies, ed., Academic Press, New York, NY.
  • Podgorski, A. (2009). Estimation of the Upper Limit of Aerosol Nanoparticles Penetration Through Inhomogeneous Fibrous Filters. J. Nanoparticle Res. 11:197–207.
  • Podgorski, A., and Balazy, A. (2008). Novel Formulae for Deposition Efficiency of Electrically Neutral, Submicron Aerosol Particles in Bipolarly Charged Fibrous Filters Derived Using Brownian Dynamics Approach. Aerosol Sci. Technol. 42:123–133.
  • Podgorski, A., Balazy, A., and Gradon, L. (2006). Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters. Chem Eng. Sci. 61:6804–6815.
  • Podgorski, A., Maisser, A., Szymanski, W.W., Jackiewicz, A., and Gradon, L. (2011). Penetration of Monodisperse, Singly Charged Nanoparticles through Polydisperse Fibrous Filters. Aerosol Sci. Technol. 45:215–233.
  • Ramarao, B.V., Tien, C., and Mohan, S. (1994). Calculation of Single-Fiber Effiencies for Interception and Impaction with Superimposed Brownian-Motion. J. Aerosol Sci. 25:295–313.
  • Shapiro, M., Kettner, I.J., and Brenner, H. (1991). Transport Mechanics and Collection of Submicrometer Particles in Fibrous Filters. J. Aerosol Sci. 22:707–722.
  • Stechkina, I.B., and Fuchs, N.A. (1966). Studies on Fibrous Aerosol Filters—I. Calculation of Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 9:59–64.
  • Thajudeen, T., Gopalakrishnan, R., and Hogan, C.J. (2012). The Collision Rate of Nonspherical Particles and Aggregates for all Diffusive Knudsen Numbers. Aerosol Sci. Technol. 46:1174–1186.
  • Thajudeen, T., Hunt, B., and Hogan, C.J. (2014). The Single Fiber Collision Rate & Filtration Efficiency for Nanoparticles II. Extension to Arbitrary Shaped Particles. Aerosol Sci. Technol. In Press.
  • Vanosdell, D.W., Liu, B.Y. H., Rubow, K.L., and Pui, D.Y. H. (1990). Experimental-Study of Submicrometer and Ultrafine Particle Penetration and Pressure-Drop For High-Efficiency Filters. Aerosol Sci. Technol. 12:911–925.
  • Wang, C.-S., and Otani, Y. (2012). Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review. Ind. Eng. Chem. Res. 52:5–17.
  • Wang, J., Chen, D.R., and Pui, D.Y. H. (2007). Modeling of Filtration Efficiency of Nanoparticles in Standard Filter Media. J. Nanopart Res. 9:109–115.
  • Yeh, H.-C., and Liu, B.Y. H. (1974a). Aerosol Filtration by Fibrous Filters—I. theoretical. J. Aerosol Sci. 5:191–204.
  • Yeh, H.-C., and Liu, B.Y. H. (1974b). Aerosol Filtration by Fibrous Filters—II. Experimental. J. Aerosol Sci. 5:205–217.
  • Yun, K.M., Hogan, C.J., Mastubayashi, Y., Kawabe, M., Iskandar, F., and Okuyama, K. (2007). Nanoparticle Filtration by Electrospun Polymer Fibers. Chem. Eng. Sci. 62:4751–4759.
  • Žukauskas, A. (1972). Heat Transfer from Tubes in Crossflow. Adv. Heat Transfer. 8:93–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.