704
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The Single-Fiber Collision Rate and Filtration Efficiency for Nanoparticles II: Extension to Arbitrary-Shaped Particles

, &
Pages 886-895 | Received 24 Sep 2013, Accepted 10 Jun 2014, Published online: 11 Aug 2014

REFERENCES

  • Balazy, A., and Podgorski, A. (2007). Deposition Efficiency of Fractal-like Aggregates in Fibrous Filters Calculated using Brownian Dynamics Method. J. Colloid Interf. Sci. 311:323–337.
  • Chakrabarty, R. K., Moosmuller, H., Arnott, W. P., Garro, M. A., Tian, G. X., Slowik, J. G., et al. (2009). Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame. Phys. Rev. Lett. 102.
  • Dahneke, B. E. (1973). Slip Correction Factors for Nonspherical Bodies- III The Form of the General Law. J. Aerosol Sci. 4:163–170.
  • Dahneke, B. E. (1983). Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols, in Theory of Dispersed Multiphase Flow, R. E. Meyer, ed., Academic Press, New York.
  • Douglas, J. F., Zhou, H. X., and Hubbard, J. B. (1994). Hydrodynamic Friction and the Capacitance of Arbitrarily-Shaped Objects. Phys. Rev. E 49:5319–5337.
  • Filippov, A. V., Zurita, M., and Rosner, D. E. (2000). Fractal-like Aggregates: Relation Between Morphology and Physical Properties. J. Colloid Interf. Sci. 229:261–273.
  • Gopalakrishnan, R., and Hogan, C. J. (2011). Determination of the Transition Regime Collision Kernel from Mean First Passage Times. Aerosol Sci. Technol. 45:1499–1509.
  • Gopalakrishnan, R., Meredith, M. J., Larriba-Andaluz, C., and Hogan, C. J. (2013a). Brownian Dynamics Determination of the Bipolar Steady State Charge Distribution on Spheres and Non-spheres in the Transition Regime. J. Aerosol Sci. 63:126–145.
  • Gopalakrishnan, R., Thajudeen, T., and Hogan, C. J. (2011). Collision Limited Reaction Rates for Arbitrarily Shaped Particles Across the Entire Diffusive Knudsen Number Range. J. Chem. Phys. 135:054302.
  • Gopalakrishnan, R., Thajudeen, T., Ouyang, H., and Hogan Jr, C. J. (2013b). The Unipolar Diffusion Charging of Arbitrary Shaped Aerosol Particles. J. Aerosol Sci. 64:60–80.
  • Hansen, S. (2004). Translational Friction Coefficients for Cylinders of Arbitrary Axial Ratios Estimated by Monte Carlo Simulation. J. Chem. Phys. 121:9111–9115.
  • Huang, H., Oh, C., and Sorensen, C. M. (1998). Structure Factor Scaling in Aggregating Systems. Phys. Rev. E 57:875–880.
  • Hunt, B., Thajudeen, T., and Hogan, C. J. (2014). The Single-Fiber Collision Rate & Filtration Efficiency for Nanoparticles I. The First Passage Time Calculation Approach. Aerosol Sci. Technol. In Press.
  • Kasper, G., and Shaw, D. T. (1982). Comparative Size Distribution Measurements on Chain Aggregates. Aerosol Sci. Technol. 2:369–381.
  • Kim, S. C., Wang, J., Emery, M. S., Shin, W. G., Mulholland, G. W., and Pui, D. Y. H. (2009). Structural Property Effect of Nanoparticle Agglomerates on Particle Penetration through Fibrous Filter. Aerosol Sci. Tech. 43:344–355.
  • Kirsch, A. A., Stechkina, I. B., and Fuchs, N. A. (1974). Gas Flow in Aerosol Filters Made of Polydisperse Ultrafine Fibres. J. Aerosol Sci. 5:39–45.
  • Kuwabara, S. (1959). The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. J. Phys. Soc. Japan 14:527–532.
  • Latin, D., Ferry, D., Gay, J. M., Delhaye, D., and Ouf, F. X. (2013). On methods Determining the Fractal Dimension of Combustion Aerosols and Particle Clusters. J. Aerosol Sci. 58:41–49.
  • Lee, K. W., and Liu, B. Y. H. (1982). Theoretical-Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1:147–161.
  • Narsimhan, G., and Ruckenstein, E. (1985). Monte-Carlo Simulation of Brownian Coagulation over the Entire Range of Particle Sizes from Near Molecular to Colloidal - Connection Between Collision Efficiency and Interparticle Forces. J. Colloid Interf. Sci. 107:174–193.
  • Scheckman, J. H., McMurry, P. H., and Pratsinis, S. E. (2009). Rapid Characterization of Agglomerate Aerosols by In Situ Mass-Mobility Measurements. Langmuir 25:8248–8254.
  • Schmidt-Ott, A., Baltensperger, U., Gaggeler, H. W., and Jost, D. T. (1990). Scaling Behaviour of Physical Parameters Describing Agglomerates. J. Aerosol Sci. 21:711–717.
  • Seto, T., Furukawa, T., Otani, Y., Uchida, K., and Endo, S. (2010). Filtration of Multi-Walled Carbon Nanotube Aerosol by Fibrous Filters. Aerosol Sci. Technol. 44:734–740.
  • Sorensen, C. M. (2011). The Mobility of Fractal Aggregates: A Review. Aerosol Sci. Technol. 45:765–779.
  • Sorensen, C. M., Kim, W., Fry, D., Shi, D., and Chakrabarti, A. (2003). Observation of Soot Superaggregates with a Fractal Dimension of 2.6 in Laminar Acetylene/Air Diffusion Flames. Langmuir 19:7560–7563.
  • Stechkina, I. B., and Fuchs, N. A. (1966). Studies on Fibrous Aerosol Filters—I. Calculation of Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 9:59–64.
  • Tajima, N., Fukushima, N., Ehara, K., and Sakurai, H. (2011). Mass Range and Optimized Operation of the Aerosol Particle Mass Analyzer. Aerosol Sci. Technol. 45:196–214.
  • Thajudeen, T., Gopalakrishnan, R., and Hogan, C. J. (2012). The Collision Rate of Nonspherical Particles and Aggregates for all Diffusive Knudsen Numbers. Aerosol Sci. Technol. 46:1174–1186.
  • Thajudeen, T., and Hogan, C. J. (2012). First Passage Calculation of the Conductivity of Particle Aggregate-Laden Suspensions and Composites Powder Technol. 218:31–39.
  • Wang, J., Chen, D. R., and Pui, D. Y. H. (2007). Modeling of Filtration Efficiency of Nanoparticles in Standard Filter Media. J. Nanoparticle Res. 9:109–115.
  • Wang, J., Kim, S. C., and Pui, D. Y. H. (2011a). Carbon Nanotube Penetration through a Screen Filter: Numerical Modeling and Comparison with Experiments. Aerosol Sci. Technol. 45:443–452.
  • Wang, J., Kim, S. C., and Pui, D. Y. H. (2011b). Measurement of Multi-wall Carbon Nanotube Penetration Through a Screen Filter and Single-fiber Analysis. J. Nanoparticle Res. 13:4565–4573.
  • Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., and Hogan, C. J. (2012). Determination of the Scalar Friction Factor for Non-spherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). Aerosol Sci. Technol. 46:1065–1078.
  • Žukauskas, A. (1972). Heat Transfer from Tubes in Crossflow. Adv. in Heat Transfer 8:93–160.
  • Zurita-Gotor, M., and Rosner, D. E. (2002). Effective Diameters for Collisions of Fractal-like Aggregates: Recommendations for Improved Aerosol Coagulation Frequency Predictions. J. Colloid Interf. Sci. 255:10–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.