932
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Aerosolization of Two Strains (Ice+ and Ice–) of Pseudomonas syringae in a Collison Nebulizer at Different Temperatures

, , , &
Pages 159-166 | Received 01 Oct 2014, Accepted 16 Jan 2015, Published online: 02 Mar 2015

REFERENCES

  • Aller, J. Y., Kuznetsova, M. R., Jahns, C. J., and Kemp, P. F. (2005). The Sea Surface Microlayer as a Source of Viral and Bacterial Enrichment in Marine Aerosols. J. Aerosol Sci., 36:801–812.
  • Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A. M. (2007). Microorganisms Isolated from the Water Phase of Tropospheric Clouds at the Puy de Dôme: Major Groups and Growth Abilities at Low Temperatures. FEMS Microbiol. Ecol., 59:242–254.
  • Attard, E., Yang, H., Delort, A.-M., Amato, P., Pöschl, U., Glaux, C., Koop, T., and Morris, C. (2012). Effects of Atmospheric Conditions on Ice Nucleation Activity of Pseudomonas. Atmos. Chem. Phys., 12:10667–10677.
  • Baylor, E., Baylor, M., Blanchard, D. C., Syzdek, L. D., and Appel, C. (1977). Virus Transfer from Surf to Wind. Science, 198:575–580.
  • Bigg, E., and Miles, G. (1964). The Results of Large-Scale Measurements of Natural Ice Nuclei. J. Atmos. Sci., 21:396–403.
  • Bigg, E. K., (2007). Sources, Nature and Influence on Climate of Marine Airborne Particles. Environ. Chem., 4:155–161.
  • Blanchard, D. C., (1989). The Ejection of Drops From the Sea and Their Enrichment With Bacteria and Other Materials: A Review. Estuaries, 12:127–137.
  • Blot, R., Clarke, A., Freitag, S., Kapustin, V., Howell, S., Jensen, J., Shank, L., McNaughton, C., and Brekhovskikh, V. (2013). Ultrafine Sea Spray Aerosol Over the South Sastern Pacific: Open-Ocean Contributions to Marine Boundary Layer CCN. Sea, 13:3279–3322.
  • Brosseau, L. M., Vesley, D., Rice, N., Goodell, K., Nellis, M., and Hairston, P. (2000). Differences in Detected Fluorescence Among Several Bacterial Species Measured with a Direct-Reading Particle Sizer and Fluorescence Detector. Aerosol Sci. Technol., 32:545–558.
  • Cavalli, F., Facchini, M., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y., O’Dowd, C., and Putaud, J. P. (2004). Advances in Characterization of Size-Resolved Organic Matter in Marine Aerosol Over the North Atlantic. J. Geophys. Res.: Atmos. (1984–2012) 109(D24, 27).
  • Chi, M.-C., Li, C.-S., (2007). Fluorochrome in Monitoring Atmospheric Bioaerosols and Correlations With Meteorological Factors and Air Pollutants. Aerosol Sci. Technol., 41:672–678.
  • Claeys, M., Wang, W., Vermeylen, R., Kourtchev, I., Chi, X., Farhat, Y., Surratt, J. D., Gómez-González, Y., Sciare, J., and Maenhaut, W. (2010). Chemical Characterisation of Marine Aerosol at Amsterdam Island During the Austral Summer of 2006–2007. J. Aerosol Sci., 41:13–22.
  • Clarke, C. R., Cai, R., Studholme, D. J., Guttman, D. S., and Vinatzer, B. A. (2010). Pseudomonas syringae Strains Naturally Lacking the Classical P. syringae hrp/hrc Locus are Common Leaf Colonizers Equipped With an Atypical Type III Secretion System. Mol. Plant–Microbe Interact., 23:198–210.
  • Cochet, N., and Widehem, P. (2000). Ice Crystallization by Pseudomonas syringae. Appl. Microbiol. BioTechnol., 54:153–161.
  • Constantinidou, H., Hirano, S., Baker, L., and Upper, C. (1990). Atmospheric Dispersal of Ice Ucleation-Active Bacteria: The Role of Rain. Phytopathology, 80:934–937.
  • DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni, A. J., and Kreidenweis, S. M. (2003). African Dust Aerosols as Atmospheric Ice Nuclei. Geophys. Res. Lett. 30.
  • Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., and Pöschl, U. (2012). Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B 64.
  • Diehl, K., Matthias-Maser, S., Jaenicke, R., and Mitra, S. (2002). The Ice Nucleating Ability of Pollen: Part II. Laboratory Studies in Immersion and Contact Freezing Modes. Atmos. Res., 61:125–133.
  • Edwards, G., and Evans, L. (1960). Ice Nucleation by Silver Iodide: I. Freezing vs Sublimation. J. Meteorol., 17:627–634.
  • Fahlgren, C., Bratbak, G., Sandaa, R.-A., Thyrhaug, R., and Zweifel, U. L. (2011). Diversity of Airborne Bacteria in Samples Collected Using Different Devices for Aerosol Collection. Aerobiologia, 27:107–120.
  • Fergenson, D. P., Pitesky, M. E., Tobias, H. J., Steele, P. T., Czerwieniec, G. A., Russell, S. C., Lebrilla, C. B., Horn, J. M., Coffee, K. R., and Srivastava, A. (2004). Reagentless Detection and Classification of Individual Bioaerosol Particles in Seconds. Anal. Chem., 76:373–378.
  • Franc, G. D., (1988). Long Distance Transport of Erwinia Carotovora in the Atmosphere and Surface Water. Colorado State University.
  • Fu, P., Kawamura, K., and Miura, K. (2011). Molecular Characterization of Marine Organic Aerosols Collected During A Round-the-World Cruise. J. Geophys. Res.: Atmos. (1984–2012) 116. DOI:10.1029/2011JD015604.
  • Heidelberg, J., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C., and Colwell, R., (1997). Effect of Aerosolization on Culturability and Viability of Gram-Negative Bacteria. Appl. Environ. Microbiol., 63:3585–3588.
  • Hirano, S. S., and Upper, C. D. (2000). Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte. Microbiol. Mol. Biol. Rev., 64:624–653.
  • Hoose, C., Kristjánsson, J., and Burrows, S. (2010). How Important is Biological Ice Nucleation in Clouds on a Global Scale? Environ. Res. Lett., 5:024009.
  • Howell, W. E., (1949). The Growth of Cloud Drops in Uniformly Cooled Air. J. Meteorol., 6:134–149.
  • Hudson, J. G., (1993). Cloud Condensation Nuclei. J. Appl. Meteorol., 32. DOI:10.1029/GL009i001p00094.
  • Jayaweera, K., and Flanagan, P. (1982). Investigations on Biogenic Ice Nuclei in the Arctic Atmosphere. Geophys. Res. Lett., 9:94–97.
  • Jensen, P. A., Todd, W. F., Davis, G. N., and Scarpino, P. V. (1992). Evaluation of Eight Bioaerosol Samplers Challenged With Aerosols of Free Bacteria. Am. Ind. Hyg. Assoc. J., 53:660–667.
  • Kozloff, L., Schofield, M., and Lute, M. (1983). Ice Nucleating Activity of Pseudomonas Syringae and Erwinia Herbicola. J. Bacteriol., 153:222–231.
  • Kozloff, L., Turner, M., and Arellano, F. (1991). Formation of Bacterial Membrane Ice-Nucleating Lipoglycoprotein Complexes. J. Bacteriol., 173:6528–6536.
  • Lighthart, B., (1997). The Ecology of Bacteria in the Alfresco Atmosphere. FEMS Microbiol. Ecol., 23:263–274.
  • Lighthart, B., and Shaffer, B. (1994). Bacterial Flux from Chaparral Into the Atmosphere in Mid-Summer at a High Desert Location. Atmos. Environ., 28:1267–1274.
  • Lindahl, M., Faris, A., Wadstr m, T., and Hjertén, S. (1981). A New Test Based on ‘Satling Out’ to Measure Relative Surface Hydrophobicity of Bacterial Cells. Biochim. Biophys. Acta, 677:471–476.
  • Lindemann, J., Constantinidou, H. A., Barchet, W. R., and Upper, C. D. (1982). Plants as Sources of Airborne Bacteria, Including Ice Nucleation-Active Bacteria. Appl. Environ. Microbiol., 44:1059–1063.
  • Lindemann, J., and Upper, C. (1985). Aerial Dispersal of Epiphytic Bacteria Over Bean Plants. Appl. Environ. Microbiol., 50:1229–1232.
  • Lindow, S., (1983). The Role of Bacterial Ice Nucleation in Frost Injury to Plants. Ann. Rev. Phytopathol., 21:363–384.
  • Lindow, S., Arny, D., and Upper, C. (1978). Erwinia Herbicola: A Bacterial Ice Nucleus Active in Increasing Frost Injury to Corn. Phytopathology, 68:523–527.
  • Lohmann, U., and Diehl, K. (2006). Sensitivity Studies of the Importance of Dust Ice Nuclei for the Indirect Aerosol Effect on Stratiform Mixed-Phase Clouds. J. Atmos. Sci., 63:968–982.
  • Lundheim, R., (2002). Physiological and Ecological Significance of Biological Ice Nucleators. Philos. Trans. R. Soc. London. Ser. B: Biol. Sci., 357:937–943.
  • Maki, L. R., Galyan, E. L., Chang-Chien, M.-M., and Caldwell, D. R. (1974). Ice Nucleation Induced by Pseudomonas syringae. Appl. Microbiol., 28:456–459.
  • Marks, R., Kruczalak, K., Jankowska, K., and Michalska, M. (2001). Bacteria and Fungi in Air Over the Gulf of Gdańsk and Baltic Sea. J. Aerosol Sci., 32:237–250.
  • Mason, B., (1952). The Spontaneous Crystallization of Supercooled Water. Quart. J. R. Meteorol. Soc., 78:22–27.
  • Mason, B., and Ludlam, F. (1951). The Microphysics of Clouds. Rep. Progr. Phys., 14:147–195.
  • Mohan, S., and Schaad, N. (1987). An Improved Agar Plating Assay for Detecting Pseudomonas syringae pv. syringae and P. s. pv. phaseolicola in Contaminated bean Seed. Phytopathology, 77:1390–1395.
  • Monteil, C. L., Bardin, M., and Morris, C. E. (2014). Features of Air Masses Associated With the Deposition of Pseudomonas syringae and Botrytis Cinerea by Rain and Snowfall. The ISME J. 8:2290–2304.
  • Morris, C., Sands, D., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., Ariya, P., and Psenner, R. (2011). Microbiology and Atmospheric Processes: Research Challenges Concerning the Impact of Airborne Micro-Organisms on the Atmosphere and Climate. Biogeosciences, 8:17–25.
  • Morris, C. E., Kinkel, L. L., Xiao, K., Prior, P., and Sands, D. C. (2007). Surprising Niche for the Plant Pathogen Pseudomonas syringae. Infect. Genet. Evol., 7:84–92.
  • Morris, C. E., Monteil, C. L., and Berge, O. (2013). The Life History of Pseudomonas syringae: Linking Agriculture to Earth System Processes. Ann. Rev. Phytopathol..
  • Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffière, A., Yan, S., Dominguez, H., and Thompson, B. M. (2008). The Life History of the Plant Pathogen Pseudomonas syringae is Linked to the Water Cycle. ISME J., 2:321–334.
  • Mossop, S., (1955). The Freezing of Supercooled Water. Proc. Phys. Soc.. B, 68:193.
  • Murray, B., O’Sullivan, D., Atkinson, J., and Webb, M. (2012). Ice Nucleation by Particles Immersed in Supercooled Cloud Droplets. Chem. Soc. Rev., 41:6519–6554.
  • Polymenakou, P. N., (2012). Atmosphere: A Source of Pathogenic or Beneficial Microbes? Atmosphere, 3:87–102.
  • Pósfai, M., Li, J., Anderson, J. R., and Buseck, P. R. (2003). Aerosol Bacteria Over the Southern Ocean During Ace-1. Atmos. Res., 66:231–240.
  • Pouleur, S., Richard, C., Martin, J.-G., and Antoun, H. (1992). Ice Nucleation Activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol., 58:2960–2964.
  • Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., Twohy, C. H., Prenni, A. J., and Prather, K. A. (2009). In Situ Detection of Biological Particles in Cloud Ice-Crystals. Nature Geosci., 2:398–401.
  • Riffaud, C. M. H., and Morris, C. E. (2002). Detection of Pseudomonas syringae pv. aptata in Irrigation Water Retention Basins by Immunofluorescence Colony-Staining. Eur. J. Plant Pathol., 108:539–545.
  • Rixen, C., Stoeckli, V., and Ammann, W. (2003). Does Artificial Snow Production Affect Soil and Vegetation of Ski Pistes? A Review. Perspect. Plant Ecol. Evol.Syst., 5:219–230.
  • Sands, D., Langhans, V., Scharen, A., De Smet, G., (1982). The Association Between Bacteria and Rain and Possible Resultant Meteorological Implications. Idojaras.
  • Schaefer, V. J., (1952). Formation of Ice Crystals in Ordinary and Nuclei-Free Air. Ind. Eng. Chem., 44:1300–1304.
  • Seaver, M., (1999). Size and Fluorescence Measurements for Field Detection of Biological Aerosols. Aerosol Sci. Technol., 30:174–185.
  • Sharma, N. K., Rai, A. K., Singh, S., and Brown, R. M. (2007). Airborne Algae: Their Present Status and Relevance. J. Phycol., 43:615–627.
  • Vali, G., Christensen, M., Fresh, R., Galyan, E., Maki, L., and Schnell, R. (1976). Biogenic Ice Nuclei. Part II: Bacterial Sources. J. Atmos. Sci., 33:1565–1570.
  • Vonnegut, B., (1947). The Nucleation of Ice Formation by Silver Iodide. J. Appl.Phys., 18:593–595.
  • Weidner, T., (2013). Uncovering the Tricks of Nature's Ice-Seeding Bacteria. Catherine Meyers [cited 1 December 2013]. Available from http://www.eurekalert.org/pub_releases/2013-10/aiop-utt102313.php.
  • Wells, C.L, Moore, E. A., Hoag, J. A., Hirt, H., Dunny, G. M., and Erlandsen, S. L. (2000). Inducible Expression of Enterococcus faecalis Aggregation Substance Surface Protein Facilitates Bacterial Internalization by Cultured Enterocytes. Infect. Immun., 68:7190–7194.
  • Young, J., Luketina, R., and Marshall, A. (1977). The Effects on Temperature on Growth In Vitro of Pseudomonas syringae and Xanthomonas pruni. J. Appl. Bacteriol., 42:345–354.
  • Zhao, Y., Aarnink, A. J., Doornenbal, P., Huynh, T. T., Koerkamp, P.W.G., de Jong, M. C., and Landman, W. J. (2011). Investigation of the Efficiencies of Bioaerosol Samplers for Collecting Aerosolized Bacteria Using a Fluorescent Tracer. I: Effects of Non-Sampling Processes on Bacterial Culturability. Aerosol Sci. Technol., 45:423–431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.