2,771
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Water Activities and Osmotic Coefficients of Aqueous Solutions of Five Alkylaminium Sulfates and Their Mixtures with H2SO4 at 25oC

, &
Pages 566-579 | Received 23 Oct 2014, Accepted 25 Feb 2015, Published online: 17 Jun 2015

REFERENCES

  • Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J. (2013). Molecular Understanding of Sulphuric Acid-Amine Particle Nucleation in the Atmosphere. Nature, 502(7471):359–363.
  • Blandamer, M. J., Engberts, Jan B. F. N., Gleeson, P. T., and Reis, J. C. R. (2005). Activity of Water in Aqueous Systems; A Frequently Neglected Property. Chem. Soc. Rev., 34(5):440–458.
  • Bonner, O. D. (1981). Osmotic and Activity Coefficients of Methyl-Substituted Ammonium Nitrates at 298.15 K. J. Chem. Eng. Data, 26(2):148–149.
  • Bzdek, B. R., Ridge, D. P., and Johnston, M. V. (2010). Amine Exchange into Ammonium Bisulfate and Ammonium Nitrate Nuclei. Atmos. Chem. Phys., 10(8):3495–3503.
  • Chan, L. P. and Chan, C. K. (2012). Displacement of Ammonium from Aerosol Particles by Uptake of Triethylamine. Aerosol Sci. Technol., 46:236–247.
  • Chan, L. P. and Chan, C. K. (2013). Role of the Aerosol Phase State in Ammonia/Amines Exchange Reactions. Environ. Sci. Technol., 47(11):5755–5762.
  • Clegg, S. L. and Brimblecombe, P. (1995). Application of a Multicomponent Thermodynamic Model to Activities and Thermal Properties of 0–40 mol kg-1 Aqueous Sulfuric Acid 328 K to <200 K. J. Chem. Eng. Data, 40:43–64.
  • Clegg, S. L., Brimblecombe, P., and Wexler, A. S. (1998). A Thermodynamic Model of the System H+ - NH4+ - SO42−- NO3− - H2O at Tropospheric Temperatures. J. Phys. Chem. A, 102:2137–2154.
  • Clegg, S. L., Ho, S. S., Chan, C. K., and Brimblecombe, P. (1995). The Thermodynamic Properties of Aqueous (NH4)2SO4 to High Supersaturation, as a Function of Temperature. J. Chem. Eng. Data, 40:1079–1090.
  • Clegg, S. L., Pitzer, K. S., and Brimblecombe, P. (1992). Thermodynamics of Multicomponent, Miscible, Ionic Solutions. II. Mixtures Including Unsymmetrical Electrolytes. J. Phys. Chem., 96:9470–9479.
  • Clegg, S. L., Qiu, C., and Zhang, R. (2013). The Deliquescence Behaviour, Solubilities, and Densities of Aqueous Solutions of Five Methyl- and Ethyl-Aminium Sulphate Salts. Atmos. Environ., 73:145–158.
  • Clegg, S. L., Seinfeld, J. H., and Edney, E. O. (2003). Thermodynamic Modelling of Aqueous Aerosols Containing Electrolytes and Dissolved Organic Compounds. II. An Extended Zdanovskii–Stokes–Robinson Approach. J. Aerosol Sci., 34(6):667–690.
  • Fountoukis, C., and Nenes, A. (2007). ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+–Ca2+–Mg2+–NH4+ –Na+–SO42− –NO3− –Cl−–H2O Aerosols. Atmos. Chem. Phys., 7:4639–4659.
  • Ge, X., Wexler, A. S., and Clegg, S. L. (2011a). Atmospheric Amines – Part I. A Review. Atmos. Environ., 45(3):524–546.
  • Ge, X., Wexler, A. S., and Clegg, S. L. (2011b). Atmospheric Amines – Part II. Thermodynamic Properties and Gas/Particle Partitioning. Atmos. Environ., 45(3):561–577.
  • Kurtén, T., Loukonen, V., Vehkamäki, H., and Kulmala, M. (2008). Amines are Likely to Enhance Neutral and Ion-Induced Sulfuric Acid-Water Nucleation in the Atmosphere More Effectively than Ammonia. Atmos. Chem. Phys., 8(14):4095–4103.
  • Lavi, A., Bluvshtein, N., Segre, E., Segev, L., Flores, M., and Rudich, Y. (2013). Thermochemical, Cloud Condensation Nucleation Ability, and Optical Properties of Alkyl Aminium Sulphate Aerosols. J. Phys. Chem. C, 117(43):22412–22421.
  • Liang, Z., and Chan, C. (1997). A Fast Technique for Measuring Water Activity of Atmospheric Aerosols. Aerosol Sci. Technol., 26:255–268.
  • Lightstone, J. M., Onasch, T. B., Imre, D., and Oatis, S. (2000). Deliquescence, Efflorescence, and Water Activity in Ammonium Nitrate and Mixed Ammonium Nitrate/Succinic Acid Microparticles. J. Phys. Chem. A, 104(41):9337–9346.
  • Liu, Y., Ma, Q., and He, H. (2012). Heterogeneous Uptake of Amines by Citric Acid and Humic Acid. Environ. Sci. Technol., 46(20):11112–11118.
  • Lloyd, J. A., Heaton, K. J., and Johnston, M. V. (2009). Reactive Uptake of Trimethylamine into Ammonium Nitrate Particles. J. Phys. Chem. A, 113(17):4840–4843.
  • Macaskill, J. B. and Bates, R. G. (1986). Osmotic and Activity Coefficients of Monomethyl-, Dimethyl-, and Trimethylammonium Chlorides at 25°C. J. Solution Chem., 15(4):323–330.
  • Müller, C., Iinuma, Y., Karstensen, J., van Pinxteren, D., Lehmann, S., Gnauk, T., and Herrmann, H. (2009). Seasonal Variation of Aliphatic Amines in Marine Sub-Micrometer Particles at the Cape Verde Islands. Atmos. Chem. Phys., 9(24):9587–9597.
  • Murphy, S. M., Sorooshian, A., Kroll, J. H., Ng, N. L., Chhabra, P., Tong, C., Surratt, J. D., Knipping, E., Flagan, R. C., and Seinfeld, J. H. (2007). Secondary Aerosol Formation From Atmospheric Reactions of Aliphatic Amines. Atmos. Chem. Phys., 7(9):2313–2337.
  • Myerson, A.S., Izmailov, A.F., and Na, H.-S. (1996). Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions. J. Crystal Growth., 166:981–988.
  • Nielsen, C. J., Herrmann, H., and Weller, C. (2012). Atmospheric Chemistry and Environmental Impact of The Use of Amines in Carbon Capture and Storage (CCS). Chem. Soc. Rev., 41(19):6684.
  • Peng, C. and Chan, C. K. (2001). The Water Cycles of Water-Soluble Organic Salts of Atmospheric Importance. Atmos. Environ., 35(7):1183–1192.
  • Pratt, K. A., Hatch, L. E., and Prather, K. A. (2009). Seasonal Volatility Dependence of Ambient Particle Phase Amines. Environ. Sci. Technol., 43(14):5276–5281.
  • Qiu, C., Wang, L., Lal, V., Khalizov, A. F., and Zhang, R. (2011). Heterogeneous Reactions of Alkylamines with Ammonium Sulfate and Ammonium Bisulfate. Environ. Sci. Technol., 45(11):4748–4755.
  • Qiu, C., and Zhang, R. (2012). Physiochemical Properties of Alkylaminium Sulfates: Hygroscopicity, Thermostability, and Density. Environ. Sci. Technol., 46(8):4474–4480.
  • Rard, J. A., and Platford, R. F. (1991). Experimental Methods: Isopiestic. In Activity Coefficients in Electrolyte Solutions, 2nd Ed., ed. K. S. Pitzer, CRC Press, Boca Raton, p. 209–278.
  • Rehbein, P. J. G., Jeong, C.-H., McGuire, M. L., Yao, X., Corbin, J. C., and Evans, G. J. (2011). Cloud and Fog Processing Enhanced Gas-to-Particle Partitioning of Trimethylamine. Environ. Sci. Technol., 45(10):4346–4352.
  • Robinson, R. A., and Stokes, R. H. (1970). Electrolyte Solutions. Butterworth & Co., London, p. 29ff. (Reprinted by Dover Publications, Mineola, New York, in 2002.)
  • Smith, J. N., Barsanti, K. C., Friedli, H. R., Ehn, M., Kulmala, M., Collins, D. R., Scheckman, J. H., Williams, B. J., and McMurry, P. H. (2010). Observations of Aminium Salts in Atmospheric Nanoparticles and Possible Climatic Implications. Proc. Natl. Acad. Sci. U.S.A., 107(15):6634–6639.
  • Stokes, R. H., and Robinson, R. A. (1966). Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. J. Phys. Chem., 70:2126–2130.
  • VandenBoer, T. C., Petroff, A., Markovic, M. Z., and Murphy, J. G. (2011). Size Distribution of Alkyl Amines in Continental Particulate Matter and Their Online Detection in The Gas and Particle Phase. Atmos. Chem. Phys., 11(9):4319–4332.
  • Wang, L., Lal, V., Khalizov, A. F., and Zhang, R. (2010). Heterogeneous Chemistry of Alkylamines with Sulfuric Acid: Implications for Atmospheric Formation of Alkylaminium Sulphates. Atmos. Environ., 44(7):2461–2465.
  • Wexler, A. S., and Clegg, S. L. (2002). Atmospheric Aerosol Models for Systems Including The Ions H+, NH4+, Na+, SO42-, NO3-, Cl-, Br-, and H2O. J. Geophys. Res.-Atmos., 107: D14, Art. No. 4207. (E-AIM: http://www.aim.env.uea.ac.uk/aim/aim.php)
  • Zhang, Y., Seigneur, C., Seinfeld, J. H., Clegg, S. L., Jacobson, M., and Binkowski, F. S. (2000). A Comparative Review of Inorganic Aerosol Thermodynamic Equilibrium Modules: Similarities, Differences, and Their Likely Causes. Atmos. Environ., 34:117–137.
  • Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., et al. (2011). New and Extended Parameterization of The Thermodynamic Model AIOMFAC: Calculation of Activity Coefficients for Organic-Inorganic Mixtures Containing Carboxyl, Hydroxyl, Carbonyl, Ether, Ester, Alkenyl, Alkyl, and Aromatic Functional Groups, Atmos. Chem. Phys., 11:9155–9206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.