992
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

High-Resolution Analysis of Particle Deposition and Resuspension in Turbulent Channel Flow

Pages 739-746 | Received 08 Jan 2015, Accepted 20 Jun 2015, Published online: 24 Jul 2015

REFERENCES

  • Adhiwidjaja, I., Matsusaka, S., Tanaka, H., and Masuda, H. (2000). Simultaneous Phenomenon of Particle Deposition and Reentrainment: Effects of Surface Roughness on Deposition Layer of Striped Pattern. Aerosol Sci. Technol., 33:323–333.
  • Banerjee, S., and Campbell, A. (2005). Principles and Mechanisms of Sub-Micrometer Particle Removal by CO2 Cryogenic Technique. J. Adhesion Sci. Technol., 19:739–751.
  • Barth, T., Preuß, J., Müller, G., and Hampel, U. (2014). Single Particle Resuspension Experiments in Turbulent Channel Flows. J. Aerosol Sci., 71:40–51.
  • Boor, B. E., Siegel, J. A., and Novoselac, A. (2013a). Monolayer and Multilayer Particle Deposits on Hard Surfaces: Literature Review and Implications for Particle Resuspension in the Indoor Environment. Aerosol Sci. Technol., 47:831–847.
  • Boor, B. E., Siegel, J. A., and Novoselac, A. (2013b). Wind Tunnel Study on Aerodynamic Particle Resuspension from Monolayer and Multilayer Deposits on Linoleum Flooring and Galvanized Sheet Metal. Aerosol Sci. Technol., 47:848–857.
  • Braaten, D. A., Paw, U. K. T., and Shaw, R. H. (1990). Particle Resuspension in a Turbulent Boundary Layer: Observed and Modeled. J. Aerosol Sci., 21:613–628.
  • Cleaver, J. W., and Yates, B. (1973). Mechanism of Detachment of Colloidal Particles from a Flat Substrate in a Turbulent Flow. J. Colloid Interface Sci., 44:464–474.
  • Fu, S. C., Chao, C. Y. H., So, R. M. C., and Leung, W. T. (2013). Particle Resuspension in a Wall-Bounded Turbulent Flow. J. Fluid. Eng.-T. ASME, 135:041301.
  • Goldasteh, I., Ahmadi, G., and Ferro, A. R. (2013). Monte Carlo Simulation of Micron Size Spherical Particle Removal and Resuspension from Substrate under Fluid Flows. J. Aerosol Sci., 66:62–71.
  • Guingo, M., and Minier, J.-P. (2008). A New Model for the Simulation of Particle Resuspension by Turbulent Flows Based on a Stochastic Description of Wall Roughness and Adhesion Forces. J. Aerosol Sci., 39:957–973.
  • Ibrahim, A. H., Dunn, P. F., and Brach, R. M. (2003). Microparticle Detachment from Surfaces Exposed to Turbulent Air Flow: Controlled Experiments and Modeling. J. Aerosol Sci., 34:765–782.
  • Jiang, Y., Matsusaka, S., Masuda, H., and Qian, Y. (2008). Characterizing the Effect of Substrate Surface Roughness on Particle–Wall Interaction with the Airflow Method. Powder Technol., 186:199–205.
  • Jiang, Y., Matsusaka, S., Masuda, H., and Yokoyama, T. (2006). Characterizing the Effect of Surface Morphology on Particle–Wall Interaction by the Airflow Method. Adv. Powder Technol., 17:413–424.
  • John, W., Fritter, D. N., and Winklmayr, W. (1991). Resuspension Induced by Impacting Particles. J. Aerosol Sci., 22:723–736.
  • Kassab, A. S., Ugaz, V. M., King, M. D., and Hassan, Y. A. (2013). High Resolution Study of Micrometer Particle Detachment on Different Surfaces. Aerosol Sci. Technol., 47:351–360.
  • Kousaka, Y., Okuyama, K., and Endo, Y. (1980). Re-entrainment of Small Aggregate Particles from a Plane Surface by Air Stream. J. Chem, Eng. Jpn., 13:143–147.
  • Liu, Y. H., Maruyama, H., and Matsusaka, S. (2011). Effect of Particle Impact on Surface Cleaning Using Dry Ice Jet. Aerosol Sci. Technol., 45:1519–1527.
  • Masuda, H., Matsusaka, S., and Nagatani, S. (1994). Measurements of Powder Flow Rate in Gas–Solids Pipe Flow Based on the Static Electrification of Particles. Adv. Powder Technol., 5:241–254.
  • Matsusaka, S., Adhiwidjaja, I., Nishio, T., and Masuda, H. (1998). Formation of Striped Pattern Deposition Layers by an Aerosol Flow: Analysis of Thickness and Interval of Layers. Adv. Powder Technol., 9:207–218.
  • Matsusaka, S., Fujita, K., and Masuda, H. (1996). Particle Reentrainment under Reduced Pressure. Kagaku Kogaku Ronbun., 22:177–183.
  • Matsusaka, S., Fukuda, H., Sakura, Y., Masuda, H., and Ghadiri, M. (2008). Analysis of Pulsating Electric Signals Generated in Gas–Solids Pipe Flow. Chem. Eng. Sci., 63:1353–1360.
  • Matsusaka, S., Koumura, M., and Masuda, H. (1997). Analysis of Adhesive Force between Particle and Wall Based on Particle Reentrainment by Airflow and Centrifugal Separation. Kagaku Kogaku Ronbun., 23:561–568.
  • Matsusaka, S., and Masuda, H. (1996). Particle Reentrainment from a Fine Powder Layer in a Turbulent Air Flow. Aerosol Sci. Technol., 24:69–84.
  • Matsusaka, S., Shimizu, M., and Masuda, H. (1993). Formation of Wall Particle Layers by Simultaneous Deposition and Reentrainment of Fine Particles in Turbulent Aerosol Flows. Kagaku Kogaku Ronbun., 19:251–257.
  • Matsusaka, S., Theerachaisupakij, W., Tanoue, K., and Masuda, H. (2001a). Numerical Simulation of Particle Trajectory in Relation to the Formation of a Striped Pattern Deposition Layer. J. Chem. Eng. Jpn., 34:333–339.
  • Matsusaka, S., Theerachaisupakij, W., Yoshida, H., and Masuda, H. (2001b). Deposition Layers Formed by a Turbulent Aerosol Flow of Micron and Sub-Micron Particles. Powder Technol., 118:130–135.
  • Papavergos, P. G., and Hedley, A. B. (1984). Particle Deposition Behavior from Turbulent Flows. Chem. Eng. Res. Des., 62:275–295.
  • Reeks, M. W., and Hall, D. (2001). Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement. J. Aerosol Sci., 32:1–31.
  • Reeks, M. W., Reed, J., and Hall, D. (1988). On the Resuspension of Small Particles by a Turbulent Flow. J. Phys. D: Appl. Phys., 21:574–589.
  • Theerachaisupakij, W., Matsusaka, S., Akashi, Y., and Masuda, H. (2003). Reentrainment of Deposited Particles by Drag and Aerosol Collision. J. Aerosol Sci., 34:261–274.
  • Theerachaisupakij, W., Matsusaka, S., Kataoka, M., and Masuda, H. (2002). Effects of Wall Vibration on Particle Deposition and Reentrainment in Aerosol Flow. Adv. Powder Technol., 13:287–300.
  • Tian, L., and Ahmadi, G. (2007). Particle Deposition in Turbulent Duct Flows: Comparisons of Different Model Predictions. J. Aerosol Sci., 38:377–397.
  • Toscano, C., and Ahmadi, G. (2003). Particle Removal Mechanisms in Cryogenic Surface Cleaning. J. Adhesion, 79:175–201.
  • Tsai, C. J., Pui, D. Y. H., and Liu, B. Y. H. (1991). Particle Detachment from Disk Surfaces of Computer Disk Drives. J. Aerosol Sci., 22:737–746.
  • Wang, H.-C. (1990). Effects of Inceptive Motion on Particle Detachment from Surfaces. Aerosol Sci. Technol., 13:386–393.
  • Wen, H. Y., and Kasper, G. (1989). On the Kinetics of Particle Reentrainment from Surfaces. J. Aerosol Sci., 20:483–498.
  • Wood, N. B. (1981). A Simple Method for the Calculation of Turbulent Deposition to Smooth and Rough Surfaces. J. Aerosol Sci., 12:275–290.
  • Ziskind, G. (2006). Particle Resuspension from Surfaces: Revisited and Re-evaluated. Rev. Chem. Eng., 22:1–123.
  • Ziskind, G., Fichman, M., and Gutfinger, C. (1997). Adhesion Moment Model for Estimating Particle Detachment from a Surface. J. Aerosol Sci., 28:623–634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.