982
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Generalized TEMOM Scheme for Solving the Population Balance Equation

, , &
Pages 1021-1036 | Received 31 May 2015, Accepted 02 Sep 2015, Published online: 05 Oct 2015

REFERENCES

  • Barrett, J. C., and Jheeta, J. S. (1996). Improving the Accuracy of the Moments Method for Solving the Aerosol General Dynamic Equation. J. Aerosol Sci., 27(8):1135–1142.
  • Buesser, B., and Pratsinis, S. E. (2012). Design of Nanomaterial Synthesis by Aerosol Processes. Technology, 3:103–127.
  • Buffo, A., and Marchisio, D. L. (2014). Modeling and Simulation of Turbulent Polydisperse Gas-Liquid Systems via the Generalized Population Balance Equation. Rev. Chem. Eng., 30(1):73–126.
  • Chen, Z., Lin, J., and Yu, M. (2014). Direct Expansion Method of Moments for Nanoparticle Brownian Coagulation in the Entire Size Regime. J. Aerosol Sci., 67:28–37.
  • Cohen, E..R., and Vaughan, E..U. (1971). Approximate Solution of the Equations for Aerosol Agglomeration. J. Colloid Interf. Sci. 35:612–623.
  • Frenklach, M. (2002). Method of Moments with Interpolative Closure. Chem. Eng. Sci., 57(12):2229–2239.
  • Friedlander, S. K. (2000). Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (2nd ed.). Oxford University Press, New York.
  • Gelbard, F., and Seinfeld, J. (1980). Simulation of Multicomponent Aerosol Dynamics. J. Colloid Interf. Sci., 78(2):485–501.
  • Hulburt, H. M., and Katz, S. (1964). Some Problems in Particle Technology: A Statistical Mechanical Formulation. Chem. Eng. Sci., 19(8):555–574.
  • Jeong, J. I., and Choi, M. (2004). A Bimodal Moment Model for the Simulation of Particle Growth. J. Aerosol Sci., 35(9):1071–1090.
  • Kostoglou, M. (2007). Extended Cell Average Technique for the Solution of Coagulation Equation. J. Colloid Interf. Sci., 306(1):72–81.
  • Kraft, M. (2005). Modelling of Particulate Processes. KONA, 23(23):18–35.
  • Landgrebe, J. D., and Pratsinis, S. E. (1990). A Discrete-Sectional Model for Particulate Production by Gas-Phase Chemical Reaction and Aerosol Coagulation in the Free-Molecular Regime. J. Colloid Interf. Sci., 139(1):63–86.
  • Lee, K., Lee, Y., and Han, D. (1997). The Log-Normal Size Distribution Theory for Brownian Coagulation in the Low Knudsen Number Regime. J. Colloid Interf. Sci., 492(188):486–492.
  • Lee, K. W., and Chen, H. (1984). Coagulation Rate of Polydisperse Particles. Aerosol Sci. Technol., 3(3):327–334.
  • Lee, K. W., Chen, H., and Gieseke, J. A. (1984). Log-Normally Preserving Size Distribution for Brownian Coagulation in the Free-Molecule Regime. Aerosol Sci. Technol., 3(1):53–62.
  • Marchisio, D. L., and Fox, R. O. (2005). Solution of Population Balance Equations Using the Direct Quadrature Method of Moments. J. Aerosol Sci., 36(1):43–73.
  • Marchisio, D. L., Vigil, R. D., and Fox, R. O. (2003b). Implementation of the Quadrature Method of Moments in CFD Codes for Aggregation-Breakage Problems. Chem. Eng. Sci., 58(15):3337–3351.
  • Marchisio, D. L., Vigil, R. D., and Fox, R. O. (2003c). Quadrature Method of Moments for Aggregation-Breakage Processes. J. Colloid Interf. Sci., 258(2):322–334.
  • Marchisio, D., Pikturna, J., and Fox, R. (2003a). Quadrature Method of Moments for Population-Balance Equations. AIChE J., 49(5):1266–1276.
  • McGraw, R. (1997). Description of Aerosol Dynamics by the Quadrature Method of Moments. Aerosol Sci. Technol., 27(2):255–265.
  • McGraw, R., Nemesure, S., and Schwartz, S..E. (1998). Properties and Evolution of Aerosols with Size Distributions Having Identical Moments. J. Aerosol Sci., 29(7):761–772.
  • Morgan, N., Wells, C., Goodson, M., Kraft, M., and Wagner, W. (2006). A New Numerical Approach for the Simulation of the Growth of Inorganic Nanoparticles. J. Comput. Phys., 211(2):638–658.
  • Müller, H. (1928). Zur Allgemeinen Theorie Ser Raschen Koagulation. Fortschrittsberichte {ü}ber Kolloide Und Polymere, 27(6):223–250.
  • Otto, E., Fissan, H., Park, S., and Lee, K. (1999). Log-Normal Size Distribution Theory of Brownian Aerosol Coagulation for the Entire Particle Size Range: Part II—Analytical Solution Using Dahneke's Coagulation Kernel. J. Aerosol Sci., 30(1):17–34.
  • Pratsinis, S. (1988). Simultaneous Nucleation, Condensation, and Coagulation in Aerosol Reactors. J. Colloid Interf. Sci., 124(2):416–427.
  • Ramkrishna, D., and Singh, M. R. (2014). Population Balance Modeling: Current Status and Future Prospects. Ann. Rev. Chem. Biomol. Eng., 5:123–146.
  • Seinfeld, J. H., and Pandis, S. N. (2012). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley, Hoboken, NJ.
  • Settumba, N., and Garrick, S. C. (2003). Direct Numerical Simulation of Nanoparticle Coagulation in a Temporal Mixing Layer via a Moment Method. J. Aerosol Sci., 34(2):149–167.
  • Smoluchowski, M. von. (1917). Versuch Einer Mathematischen Theorie der Koagulationskinetik Kolloider L{ö}sungen. Z. Phys. Chem, 92:129–168.
  • Talukdar, S. S., and Swihart, M. T. (2004). Aerosol Dynamics Modeling of Silicon Nanoparticle Formation During Silane Pyrolysis: A Comparison of Three Solution Methods. J. Aerosol Sci., 35(7):889–908.
  • Thornton, C. (2004). How Do Agglomerates Break? Powder Technol., 144:110–116.
  • Upadhyay, R. R., and Ezekoye, O. a. (2003). Evaluation of the 1-point Quadrature Approximation in QMOM for Combined Aerosol Growth Laws. J. Aerosol Sci., 34(12):1665–1683.
  • Upadhyay, R. R., and Ezekoye, O. a. (2006). Treatment of Size-Dependent Aerosol Transport Processes Using Quadrature Based Moment Methods. J. Aerosol Sci., 37(7):799–819.
  • Vogel, U., Savolainen, K., Wu, Q., van Tongeren, M., Brouwer, D., and Berges, M. (2014). Handbook of Nanosafety: Measurement, Exposure and Toxicology. Elsevier, Amsterdam.
  • Whitby, E. R., and McMurry, P. H. (1997). Modal Aerosol Dynamics Modeling. Aerosol Sci. Technol., 27(6):673–688.
  • Williams, M..M.R. (1986). Some Topics in Nuclear Aerosol Dynamics. Prog. Nucl. Energy, 17(1):1–52.
  • Xie, M., and He, Q. (2013). Analytical Solution of TEMOM Model for Particle Population Balance Equation Due to Brownian Coagulation. J. Aerosol Sci., 66:24–30.
  • Xie, M.-L. (2015). Asymptotic Solution of Moment Approximation of the Particle Population Balance Equation for Brownian Agglomeration. Aerosol Sci. Technol., 49(2):109–114.
  • Xie, M.-L., Yu, M.-Z., and Wang, L.-P. (2012). A TEMOM Model to Simulate Nanoparticle Growth in the Temporal Mixing Layer Due to Brownian Coagulation. J. Aerosol Sci., 54:32–48.
  • Yu, M., and Lin, J. (2009a). Solution of the Agglomerate Brownian Coagulation Using Taylor-Expansion Moment Method. J. Colloid Interf. Sci., 336(1):142–149.
  • Yu, M., and Lin, J. (2009b). Taylor-Expansion Moment Method for Agglomerate Coagulation Due to Brownian Motion in the Entire Size Regime. J. Aerosol Sci., 40(6):549–562.
  • Yu, M., and Lin, J. (2010). Binary Homogeneous Nucleation and Grwoth of Water-Sulfuric Acid Nanoparticles Using a TEMOM Model. Int. J. Heat Mass Trans., 53, 635–644.
  • Yu, M., Lin, J., Cao, J., and Seipenbusch, M. (2015a). An Analytical Solution for the Population Balance Equation Using a Moment Method. Particuology, 18:194–200.
  • Yu, M., Lin, J., and Chan, T. (2008). A New Moment Method for Solving the Coagulation Equation for Particles in Brownian Motion. Aerosol Sci. Technol., 42(9):705–713.
  • Yu, M., Zhang, X., Jin, G., Lin, J., and Seipenbusch, M. (2015b). A New Analytical Solution for Solving the Population Balance Equation in the Continuum-Slip Regime. J. Aerosol Sci., 80:1–10.
  • Yuan, C., Laurent, F., and Fox, R. O. (2012). An Extended Quadrature Method of Moments for Population Balance Equations. J. Aerosol Sci., 51:1–23.
  • Zhao, H., Kruis, F. E., and Zheng, C. (2010). A Differentially Weighted Monte Carlo Method for Two-Component Coagulation. J. Comput. Phys., 229(19):6931–6945.
  • Zhao, H., and Zheng, C. (2013). A Population Balance-Monte Carlo Method for Particle Coagulation in Spatially Inhomogeneous Systems. Comput. Fluids, 71:196–207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.