2,074
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Dustiness and Deagglomeration Testing: Interlaboratory Comparison of Systems for Nanoparticle Powders

, , , , , , & show all
Pages 1222-1231 | Received 21 Aug 2015, Accepted 16 Oct 2015, Published online: 23 Nov 2015

REFERENCES

  • Andrès, C., Réginault, P., Rochat, M. H., Chaillot, B., and Pourcelot, Y., (1996). Particle-Size Distribution of a Powder: Comparison of Three Analytical Techniques. Int. J. Pharmaceut., 144(2):141–146.
  • Bansal, N. P., Goldsby, J. C., Rogers, R. B., Susner, M. A., and Sumption, M. D., (2015). Chemical Synthesis of Superconducting MgB2 Nanopowder. J. Alloy. Compound., 622(0):986–988.
  • Batsanov, S. S., (2001). Van der Waals Radii of Elements. Inorg. Mater., 37(9):871–885.
  • Bergström, L., (1997). Hamaker Constants of Inorganic Materials. Adv. Colloid Interface Sci., 70(0):125–169.
  • Boundy, M., Leith, D., and Polton, T. (2006). Method to Evaluate the Dustiness of Pharmaceutical Powders. Annals of Occupational Hygiene, 50(5):453–458.
  • CEN. (2013). FprEN 15051 Workplace Exposure: Measurement of the Dustiness of Bulk Materials; Part 1: Requirements and Choice of Test Methods; Part 2: Rotating Drum Method; Part 3: Continuous Drop Method. European Committee for Standardization, Brussels, Belgium.
  • Cheng, W., Dunn, P. F., and Brach, R. M., (2002). Surface Roughness Effects Onmicroparticle Adhesion. J. Adhesion, 78(11):929–965.
  • Rasmussen, K., Mast, J., De Temmerman, P.-J., Verleysen, E., Waegeneers, N., Van Steen, F., Pizzolon, J. C., De Temmerman, L., Van Doren, E., Jensen, K. A., Birkedal, R., Levin, M., Nielsen, S. H., Koponen, I. K., Clausen, P. A., Kofoed-Sørensen, V., Kembouche, Y., Thieriet, N., Spalla, O., Giuo,t C., Rousset, D., Witschger, O., Bau, S., Bianchi, B., Motzkus, C., Shivachev, B., Dimowa, L., Nikolova, R., Nihtianova, D., Tarassov, M., Petrov, O., Bakardjieva, S., Gilliland, D., Pianella, F., Ceccone, G., Spampinato, V., Cotogno, G., Gibson, P., Gaillard, C., and Mech, A. (2014). Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties.
  • Dahmann, D., and Monz, C., (2011). Determination of Dustiness of Nanostructured Materials. Gefahrst. Reinhalt. L., 71(11/12):481–487.
  • Ding, Y., and Riediker, M., (2015). A System to Assess the Stability of Airborne Nanoparticle Agglomerates Under Aerodynamic Shear. J. Aerosol Sci., 88(0):98–108.
  • Gavrila-Florescu, L., Sandu, I., Stan, A., Dutu, E., and Voicu, I., (2012). Laser Synthesized Nanopowders for Polymer-Based Composites. Appl. Surf. Sci., 258(23):9260–9262.
  • Geiser, M., and Kreyling, W., (2010). Deposition and Biokinetics of Inhaled Nanoparticles. Part. Fibre Toxicol., 7(1):2.
  • Hamaker, H. C., (1937). The London—Van Der Waals Attraction Between Spherical Particles. Physica, 4(10):1058–1072.
  • Hinds, W., (1982). Aerosol Technology - Properties, Behaviour, and Measurement of Airborne Particles (2nd ed.). John Wiley & Sons, New York.
  • HORIBA (2014). A Guidebook to Particle Size Analysis. HORIBA Instruments, INC, Irvine, CA, USA.
  • Israelachvili, J. N., (2011). Van der Waals Forces Between Particles and Surfaces, in Intermolecular and Surface Forces (3rd ed.), J. N. Israelachvili, ed., Academic Press, San Diego, pp. 253–289.
  • Kuhlbusch, T. A., and Fissan, H., (2006). Particle Characteristics in the Reactor and Pelletizing Areas of Carbon Black Production. J. Occup. Environ. Hyg., 3(10):558–567.
  • Maynard, A., Baron, P., Foley, M., Shvedova, A., Kisin, E., and Castranova, V., (2004). Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single Walled Carbon Nanotube Material. J. Toxic. Environ. Health, 67:87–107.
  • Morgeneyer, M.,, Le Bihan, O., Ustache, A., and Aguerre-Chariol, O., (2013). Experimental Study of the Aerosolization of Fine Alumina Particles From Bulk by a Vortex Shaker. Powder Technol., 246(0):583–589.
  • Nishiyama, T., Inamuro, T., and Yasuda, S., (2013). Numerical Simulation of the Dispersion of Aggregated Brownian Particles Under Shear Flows. Comput. Fluids, 86(0):395–404.
  • Oberdoerster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C., (2004). Translocation of Inhaled Ultrafine Particles to the Brain. Inhal. Toxicol., 16:437–445.
  • Ogura, I., Sakurai, H., and Gamo, M. (2009). Dustiness Testing of Engineered Nanomaterials. J. Phys.: Conf. Ser., 170:012003.
  • Plinke, M. A. E., Leith, D., Boundy, M..G., and Löffler, F., (1995). Dust Generation from Handling Powders in Industry. Am. Ind. Hyg. Assoc. J., 56(3):251–257.
  • Schaefer, K., and Miszczyk, A., (2013). Improvement of Electrochemical Action of Zinc-Rich Paints by Addition of Nanoparticulate Zinc. Corros. Sci., 66(0):380–391.
  • Schneider, T., and Jensen, K., (2008). Combined Single-Drop and Rotating Drum Dustiness Test of Fine to Nanosize Powders Using a Small Drum. Ann. Occup. Hyg., 52(1):23–34.
  • Shi, H., Magaye, R., Castranova, V., and Zhao, J., (2013). Titanium Dioxide Nanoparticles: A Review of Current Toxicological Data. Part. Fibre. Toxicol., 10:15.
  • Sosnowski, T. R., Giżyńska, K., and Żywczyk, Ł. (2014). Fluidization and Break-up of Powder Particle Aggregates During Constant and Pulsating Flow in Converging Nozzles. Colloid. Surf. A, 441(0):905–911.
  • Stahlmecke, B., Wagener, S., Asbach, C., Kaminski, H., Fissan, H., and Kuhlbusch, T., (2009). Investigation of Airborne Nanopowder Agglomerate Stability in an Orifice Under Various Differential Pressure Conditions. J. Nanopart. Res., 11(7):1625–1635.
  • Svintsitskiy, D. A., Chupakhin, A. P., Slavinskaya, E. M., Stonkus, O. A., Stadnichenko, A. I., Koscheev, S. V., and Boronin, A. I., (2013). Study of Cupric Oxide Nanopowders as Efficient Catalysts for Low-Temperature CO Oxidation. J. Mol. Catal. A: Chem., 368–369(0):95–106.
  • Tsai, C., Wu, C., Leu, M., Chen, S., Huang, C., Tsai, P., and Ko, F., (2009). Dustiness Test of Nanopowders Using a Standard Rotating Drum with a Modified Sampling Train. J. Nanopart. Res., 11(1):121–131.
  • Tsai, S. J., Ada, E., Isaacs, J. A., and Ellenbecker, M. J., (2009). Airborne Nanoparticle Exposures Associated with the Manual Handling of Nanoalumina and Nanosilver in Fume Hoods. J. Nanopart. Res., 11(1):147–161.
  • Turki, D., and Fatah, N., (2008). Behavior and Fluidization of the Cohesive Powders: Agglomerates Sizes Approach. Braz. J. Chem. Eng., 25(04):697–711.
  • van Ommen, J. R., King, D. M., Weimer, A., Pfeer, R., and van Wachem, B., (2010). Experiments and Modelling of Micro-Jet Assisted Fluidization of Nanoparticles, in Paper Presented at The 13th International Conference on Fluidization - New Paradigm in Fluidization Eng-ineering. ECI Digital Archives, Engineering Conferences International, New York, NY, USA.
  • van Ommen, J. R., Valverde, J., and Pfeffer, R., (2012). Fluidization of Nanopowders: A Review. J. Nanopart. Res., 14(3):1–29.
  • Verlag, B., (2014). European Norm 15051, Workplace Exposure—Measurement of the Dustiness of Bulk Materials , British Standards Institution, London, UK.
  • Wang, J., Asbach, C., Fissan, H., Hulser, T., Kaminski, H., Kuhlbusch, T. A. J., and Pui, D. Y. H., (2012). Emission Measurement and Safety Assessment for the Production Process of Silicon Nanoparticles in a Pilot-Scale Facility. J. Nanopart. Res., 14:759.
  • Zalite, I., Zilinska, N., and Kladler, G., (2008). SiAlON Ceramics From Nanopowders. J. Eur. Ceram. Soc., 28(5):901–905.
  • Zhu, C., Yu, Q., Dave, R. N., and Pfeffer, R., (2005). Gas Fluidization Characteristics of Nanoparticle Agglomerates. AIChE J., 51(2):426–439.