1,652
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Rapid and Sustainable Surface Acoustic Wave Atomizer

, , &
Pages 1271-1280 | Received 07 Jun 2015, Accepted 25 Oct 2015, Published online: 11 Dec 2015

REFERENCES

  • Alghane, M., Chen, B., Fu, Y., Li, Y., Luo, J., and Walton, A. (2011). Experimental and Numerical Investigation of Acoustic Streaming Excited by using a Surface Acoustic Wave Device on a 128 YX-LiNbO3 Substrate. J. Micromech. Microeng., 21:015005–015015.
  • Alvarez, M., Friend, J. R., and Yeo, L. Y. (2008). Surface Vibration Induced Spatial Ordering of Periodic Polymer Patterns on a Substrate. Langmuir., 24:10629–10632.
  • Benitez, R., Soler, J., and Daza, L. (2005). Novel Method for Preparation of PEMFC Electrodes by the Electrospray Technique. J. Power Sources., 151:108–113.
  • Chono, K., Shimizu, N., Matsui, Y., Kondoh, J., and Shiokawa, S. (2004). Development of Novel Atomization System Based on SAW Streaming. Japanese J. Appl. Phys., 43:2987–2991.
  • Darmawan, M., and Byun, D. (2015). Focused Surface Acoustic Wave Induced Jet Formation on Superhydrophobic Surfaces. Microfluid. Nanofluid., 18:1107–1114.
  • Darmawan, M., Jeon, K., Ju, J. M., Yamagata, Y., and Byun, D. (2014). Deposition of Poly (3, 4-ethylenedioxythiophene)–Poly (styrenesulfonate)(PEDOT-PSS) Particles using Standing Surface Acoustic Waves and Electrostatic Deposition Method for the Rapid Fabrication of Transparent Conductive Film. Sens. Actuat. A Phys., 205:177–185.
  • Du, X., Swanwick, M., Fu, Y., Luo, J., Flewitt, A., Lee, D., Maeng, S., and Milne, W. (2009). Surface Acoustic Wave induced Streaming and Pumping in 128 Y-cut LiNbO3 for Microfluidic Applications. J. Micromech. Microeng., 19:035016–035025.
  • Friend, J., and Yeo, L. Y. (2011). Microscale Acoustofluidics: Microfluidics Driven Via Acoustics and Ultrasonics. Rev. Modern Phys., 83:647–704.
  • Giménez, S., Mora-Seró, I., Macor, L., Guijarro, N., Lana-Villarreal, T., Gómez, R., Diguna, L. J., Shen, Q., Toyoda, T., and Bisquert, J. (2009). Improving the Performance of Colloidal Quantum-dot-sensitized Solar Cells. Nanotechnology., 20:295204–295209.
  • Ho, J., Tan, M. K., Go, D. B., Yeo, L. Y., Friend, J. R., and Chang, H.-C. (2011). Paper-based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry. Anal. Chem. 83:3260–3266.
  • Jaworek, A. (2007). Electrospray Droplet Sources for Thin Film Deposition. J. Mater. Sci., 42:266–297.
  • Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop, D. R. (2000). Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Tech., 33:49–70.
  • Ju, J., Yamagata, Y., and Higuchi, T. (2009). Thin-Film Fabrication Method for Organic Light-Emitting Diodes Using Electrospray Deposition. Adv. Mater., 21:4343–4347.
  • Ju, J., Yamagata, Y., Ohmori, H., and Higuchi, T. (2008). High-frequency Surface Acoustic Wave Atomizer. Sens. Actuat. A Phys., 145:437–441.
  • Kim, J.-W., Yamagata, Y., Takasaki, M., Lee, B.-H., Ohmori, H., and Higuchi, T. (2005). A Device for Fabricating Protein Chips by using a Surface Acoustic Wave Atomizer and Electrostatic Deposition. Sens. Actuat. B Chem., 107:535–545.
  • Kleinstreuer, C., Zhang, Z., and Donohue, J. (2008). Targeted Drug-aerosol Delivery in the Human Respiratory System. Annu. Rev. Biomed. Eng., 10:195–220.
  • Kondoh, J., Shimizu, N., Matsui, Y., Sugimoto, M., and Shiokawa, S. (2009). Development of Temperature-control System for Liquid Droplet using Surface Acoustic Wave Devices. Sens Actuat. A: Phys., 149:292–297.
  • Kulkarni, P., Baron, P. A., and Willeke, K. (2011). Aerosol Measurement: Principles, Techniques, and Applications. John Wiley & Sons, New York.
  • Kurosawa, M., Watanabe, T., Futami, A., and Higuchi, T. (1995). Surface Acoustic Wave Atomizer. Sens Actuat. A Phys., 50:69–74.
  • Lang, R. J. (1962). Ultrasonic Atomization of Liquids. J. Acoust. Soc. Am., 34:6–8.
  • Perednis, D., and Gauckler, L. J. (2005). Thin Film Deposition using Spray Pyrolysis. J. Electroceram., 14:103–111.
  • Pingali, K. C., Rockstraw, D. A., and Deng, S. (2005). Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate. Aerosol Sci. Tech., 39:1010–1014.
  • Qi, A., Yeo, L. Y., and Friend, J. R. (2008). Interfacial Destabilization and Atomization Driven by Surface Acoustic Waves. Phys. Fluids (1994-present)., 20:074103–074116.
  • Qi, A., Yeo, L., Friend, J., and Ho, J. (2010). The Extraction of Liquid, Protein Molecules and Yeast Cells from Paper Through Surface Acoustic Wave Atomization. Lab Chip., 10:470–476.
  • Raghavan, R. V., Friend, J. R., and Yeo, L. Y. (2010). Particle Concentration Via Acoustically Driven Microcentrifugation: MicroPIV Flow Visualization and Numerical Modelling Studies. Microfluid. Nanofluid., 8:73–84.
  • Rayleigh, L. (1882). On the Equilibrium of Liquid Conducting Masses Charged with Electricity. Lond. Edinb. Dubl. Phil. Mag. J. Sci., 14:184–186.
  • Rodriguez, L., Passerini, N., Cavallari, C., Cini, M., Sancin, P., and Fini, A. (1999). Description and Preliminary Evaluation of a New Ultrasonic Atomizer for Spray-Congealing Processes. Int. J. Pharma., 183:133–143.
  • Shiokawa, S., Matsui, Y., and Ueda, T. (1989). Liquid Streaming and Droplet Formation Caused by Leaky Rayleigh Waves. in IEEE Proceedings of Ultrasonics Symposium, 1989, Montreal, Quebec, Canada, pp. 643–646.
  • Steirer, K. X., Reese, M. O., Rupert, B. L., Kopidakis, N., Olson, D. C., Collins, R. T., and Ginley, D. S. (2009). Ultrasonic Spray Deposition for Production of Organic Solar Cells. Solar Energy Mater. Solar Cells., 93:447–453.
  • Topp, M., and Eisenklam, P. (1972). Industrial and Medical uses of Ultrasonic Atomizers. Ultrasonics., 10:127–133.
  • Van Zomeren, A., Kelder, E., Marijnissen, J., and Schoonman, J. (1994). The Production of Thin Films of LiMn2O4 by Electrospraying. J. Aerosol Sci., 25:1229–1235.
  • Wu, T.-T., Tang, H.-T., Chen, Y.-Y., and Liu, P.-L. (2005). Analysis and design of focused interdigital transducers. IEEE Trans. Ultrason. Ferroelect. Freq. Control., 52:1384–1392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.