1,646
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Practical limitations of aerosol separation by a tandem differential mobility analyzer–aerosol particle mass analyzer

&
Pages 160-172 | Received 22 Sep 2015, Accepted 17 Dec 2015, Published online: 28 Jan 2016

References

  • Allen, M. D., and Raabe, O. G. (1985). Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus. Aerosol Sci. Technol., 4:269–286.
  • Atkinson, D. B. (2003). Solving Chemical Problems of Environmental Importance Using Cavity Ring-Down Spectroscopy. Analyst, 128:117–125.
  • Barone, T. L., Lall, A. A., Storey, J. M. E., Mulholland, G. W., Prikhodko, V. Y., Frankland, J. H., Parks, J. E., and Zachariah, M. R. (2011). Size-Resolved Density Measurements of Particle Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology. Energy Fuels, 25:1978–1988.
  • Chan, P., and Dahneke, B. (1981). Free-Molecule Drag on Straight Chains of Uniform Spheres. J. Appl. Phys., 52:3106–3110.
  • Charvet, A., Bau, S., Paez Coy, N., Bémer, D., and Thomas, D. (2014). Characterizing the Effective Density and Primary Particle Diameter of Airborne Nanoparticles Produced by Spark Discharge Using Mobility and Mass Measurements (Tandem DMA/APM). J. Nanopart. Res., 16:1–11.
  • Collins, D. R., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H. (2004). The Scanning DMA Transfer Function. Aerosol Sci. Technol., 38:833–850.
  • Cross, E. S., Onasch, T. B., Ahern, A., Wrobel, W., Slowik, J. G., Olfert, J., Lack, D. A., Massoli, P., Cappa, C. D., Schwarz, J. P., Spackman, J. R., Fahey, D. W., Sedlacek, A., Trimborn, A., Jayne, J. T., Freedman, A., Williams, L. R., Ng, N. L., Mazzoleni, C., Dubey, M., Brem, B., Kok, G., Subramanian, R., Freitag, S., Clarke, A., Thornhill, D., Marr, L. C., Kolb, C. E., Worsnop, D. R., and Davidovits, P. (2010). Soot Particle Studies—Instrument Inter-Comparison—Project Overview. Aerosol Sci. Technol., 44:592–611.
  • Ehara, K., Hagwood, C., and Coakley, K. J. (1996). Novel Method to Classify Aerosol Particles According to Their Mass-to-Charge Ratio—Aerosol Particle Mass Analyser. J. Aerosol Sci., 27:217–234.
  • Geller, M., Biswas, S., and Sioutas, C. (2006). Determination of Particle Effective Density in Urban Environments with a Differential Mobility Analyzer and Aerosol Particle Mass Analyzer. Aerosol Sci. Technol., 40:709–723.
  • Gopalakrishnan, R., Thajudeen, T., and Hogan, C. J. (2011). Collision Limited Reaction Rates for Arbitrarily Shaped Particles across the Entire Diffusive Knudsen Number Range. J. Chem. Phys., 135:054302.
  • Hogan, C. J., Jr., and de la Mora, J. F. (2011). Ion Mobility Measurements of Nondenatured 12–150 kda Proteins and Protein Multimers by Tandem Differential Mobility Analysis–Mass Spectrometry (DMA-MS). J. Am. Soc. Mass. Spectrom., 22:158–172.
  • Inczédy, J., Lengyel, T., and Ure, A. M. (1998). Compendium of Analytical Nomenclature (the IUPAC “Orange Book,” IUPAC Analytical Chemistry Division ). Blackwell Science, Oxford, UK.
  • Isella, L., and Drossinos, Y. (2010). Langevin Agglomeration of Nanoparticles Interacting Via a Central Potential. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 82:011404.
  • Kinney, P. D., Pui, D. Y. H., Mulholland, G. W., and Bryner, N. P. (1991). Use of the Electrostatic Classification Method to Size 0.1 μm Particles—A Feasibility Study. J. Res. Natl. Inst. Stand. Technol., 96:147–176.
  • Knutson, E. O., and Whitby, K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci., 6:443–451.
  • Kuwata, M. (2015). Particle Classification by the Tandem Differential Mobility Analyzer–Particle Mass Analyzer System. Aerosol Sci. Technol., 49:508–520.
  • Kuwata, M., and Kondo, Y. (2009). Measurements of Particle Masses of Inorganic Salt Particles for Calibration of Cloud Condensation Nuclei Counters. Atmos. Chem. Phys. Discuss., 9:4653–4689.
  • Laborde, M., Mertes, P., Zieger, P., Dommen, J., Baltensperger, U., and Gysel, M. (2012). Sensitivity of the Single Particle Soot Photometer to Different Black Carbon Types. Atmos. Meas. Tech., 5:1031–1043.
  • Lall, A. A., Ma, X., Guha, S., Mulholland, G. W., and Zachariah, M. R. (2009). Online Nanoparticle Mass Measurement by Combined Aerosol Particle Mass Analyzer and Differential Mobility Analyzer: Comparison of Theory and Measurements. Aerosol Sci. Technol., 43:1075–1083.
  • Lall, A. A., Rong, W., Mädler, L., and Friedlander, S. K. (2008). Nanoparticle Aggregate Volume Determination by Electrical Mobility Analysis: Test of Idealized Aggregate Theory Using Aerosol Particle Mass Analyzer Measurements. J. Aerosol. Sci., 39:403–417.
  • Lee, S. Y., Chang, H., Ogi, T., Iskandar, F., and Okuyama, K. (2011). Measuring the Effective Density, Porosity, and Refractive Index of Carbonaceous Particles by Tandem Aerosol Techniques. Carbon, 49:2163–2172.
  • Lee, S. Y., Widiyastuti, W., Tajima, N., Iskandar, F., and Okuyama, K. (2009). Measurement of the Effective Density of Both Spherical Aggregated and Ordered Porous Aerosol Particles Using Mobility- and Mass-Analyzers. Aerosol Sci. Technol., 43:136–144.
  • Lin, G.-Y., Liao, B.-X., Tzeng, N.-J., Chen, C.-W., Uang, S.-N., Chen, S.-C., Pui, D. Y. H., and Tsai, C.-J. (2014). The Effect of Nanoparticle Convection-Diffusion Loss on the Transfer Function of an Aerosol Particle Mass Analyzer. Aerosol Sci. Technol., 48:583–592.
  • Ma, X., Zangmeister, C. D., Gigault, J., Mulholland, G. W., and Zachariah, M. R. (2013a). Soot Aggregate Restructuring During Water Processing. J. Aerosol Sci., 66:209–219.
  • Ma, X., Zangmeister, C. D., and Zachariah, M. R. (2013b). Soot Oxidation Kinetics: A Comparison Study of Two Tandem Ion-Mobility Methods. J. Phys. Chem. C, 117:10723–10729.
  • Mackowski, D. W. (2006). Monte Carlo Simulation of Hydrodynamic Drag and Thermophoresis of Fractal Aggregates of Spheres in the Free-Molecule Flow Regime. J. Aerosol. Sci., 37:242–259.
  • Malloy, Q. G. J., Nakao, S., Qi, L., Austin, R., Stothers, C., Hagino, H., and Cocker, D. R. (2009). Real-Time Aerosol Density Determination Utilizing a Modified Scanning Mobility Particle Sizer—Aerosol Particle Mass Analyzer System. Aerosol Sci. Technol., 43:673–678.
  • McMurry, P. H., Wang, X., Park, K., and Ehara, K. (2002). The Relationship between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density. Aerosol Sci. Technol., 36:227–238.
  • Meakin, P., Donn, B., and Mulholland, G. W. (1989). Collisions between Point Masses and Fractal Aggregates. Langmuir, 5:510–518.
  • Melas, A. D., Isella, L., Konstandopoulos, A. G., and Drossinos, Y. (2014). Friction Coefficient and Mobility Radius of Fractal-Like Aggregates in the Transition Regime. Aerosol Sci. Technol., 48:1320–1331.
  • Mulholland, G. W., Bryner, N. P., and Croarkin, C. (1999). Measurement of the 100 Nm NIST SRM 1963 by Differential Mobility Analysis. Aerosol Sci. Technol., 31:39–55.
  • Olfert, J. S. (2005). A Numerical Calculation of the Transfer Function of the Fluted Centrifugal Particle Mass Analyzer. Aerosol Sci. Technol., 39:1002–1009.
  • Olfert, J. S., and Collings, N. (2005). New Method for Particle Mass Classification—the Couette Centrifugal Particle Mass Analyzer. J. Aerosol. Sci., 36:1338–1352.
  • Olfert, J. S., Reavell, K. S., Rushton, M. G., and Collings, N. (2006). The Experimental Transfer Function of the Couette Centrifugal Particle Mass Analyzer. J. Aerosol. Sci., 37:1840–1852.
  • Pagels, J., Khalizov, A. F., McMurry, P. H., and Zhang, R. Y. (2009). Processing of Soot by Controlled Sulphuric Acid and Water Condensation—Mass and Mobility Relationship. Aerosol Sci. Technol., 43:629–640.
  • Park, K., Cao, F., Kittelson, D. B., and McMurry, P. H. (2003a). Relationship between Particle Mass and Mobility for Diesel Exhaust Particles. Environ. Sci. Technol., 37:577–583.
  • Park, K., Kittelson, D. B., and McMurry, P. H. (2003b). A Closure Study of Aerosol Mass Concentration Measurements: Comparison of Values Obtained with Filters and by Direct Measurements of Mass Distributions. Atmos. Environ., 37:1223–1230.
  • Park, K., Kittelson, D., and McMurry, P. (2004a). Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility. Aerosol Sci. Technol., 38:881–889.
  • Park, K., Kittelson, D., Zachariah, M., and McMurry, P. (2004b). Measurement of Inherent Material Density of Nanoparticle Agglomerates. J. Nanopart. Res., 6:267–272.
  • Radney, J. G., Ma, X., Gillis, K. A., Zachariah, M. R., Hodges, J. T., and Zangmeister, C. D. (2013). Direct Measurements of Mass-Specific Optical Cross Sections of Single Component Aerosol Mixtures. Anal. Chem., 85:8319–8325.
  • Radney, J. G., You, R., Ma, X., Conny, J. M., Zachariah, M. R., Hodges, J. T., and Zangmeister, C. D. (2014). Dependence of Soot Optical Properties on Particle Morphology: Measurements and Model Comparisons. Environ. Sci. Technol., 48:3169–3176.
  • Rissler, J., Messing, M. E., Malik, A. I., Nilsson, P. T., Nordin, E. Z., Bohgard, M., Sanati, M., and Pagels, J. H. (2013). Effective Density Characterization of Soot Agglomerates from Various Sources and Comparison to Aggregation Theory. Aerosol Sci. Technol., 47:792–805.
  • Sakurai, H., Park, K., McMurry, P. H., Zarling, D. D., Kittelson, D. B., and Ziemann, P. J. (2003). Size-Dependent Mixing Characteristics of Volatile and Nonvolatile Components in Diesel Exhaust Aerosols. Environ. Sci. Technol., 37:5487–5495.
  • Santoro, R. J., Semerjian, H. G., and Dobbins, R. A. (1983). Soot Particle Measurements in Diffusion Flames. Combust. Flame, 51:203–218.
  • Scheckman, J. H., McMurry, P. H., and Pratsinis, S. E. (2009). Rapid Characterization of Agglomerate Aerosols by In Situ Mass–Mobility Measurements. Langmuir, 25:8248–8254.
  • Shin, W. G., Mulholland, G. W., Kim, S. C., Wang, J., Emery, M. S., and Pui, D. Y. H. (2009). Friction Coefficient and Mass of Silver Agglomerates in the Transition Regime. J. Aerosol. Sci., 40:573–587.
  • Shin, W. G., Mulholland, G. W., and Pui, D. Y. H. (2010). Determination of Volume, Scaling Exponents, and Particle Alignment of Nanoparticle Agglomerates Using Tandem Differential Mobility Analyzers. J. Aerosol. Sci., 41:665–681.
  • Sullivan, D. B., Allan, D. W., Howe, D. A., and Walls, F. L. (1990). Characterization of Clocks and Oscillators. NIST Tech. Note, 1337:1–342.
  • Sultanovaa, N., Kasarovaa, S., and Nikolov, I. (2009). Dispersion Properties of Optical Polymers. Acta Phys. Pol., A, 116:585–587.
  • Tajima, N., Fukushima, N., Ehara, K., and Sakurai, H. (2011). Mass Range and Optimized Operation of the Aerosol Particle Mass Analyzer. Aerosol Sci. Technol., 45:196–214.
  • Tajima, N., Sakurai, H., Fukushima, N., and Ehara, K. (2013). Design Considerations and Performance Evaluation of a Compact Aerosol Particle Mass Analyzer. Aerosol Sci. Technol., 47:1152–1162.
  • Toon, O. B., Pollack, J. B., and Khare, B. N. (1976). The Optical Constants of Several Atmospheric Aerosol Species: Ammonium Sulfate, Aluminum Oxide, and Sodium Chloride. J. Geophys. Res., 81:5733–5748.
  • Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O’Dowd, C. D., Marinoni, A., Horn, H. G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S. (2012). Mobility Particle Size Spectrometers: Harmonization of Technical Standards and Data Structure to Facilitate High Quality Long-Term Observations of Atmospheric Particle Number Size Distributions. Atmos. Meas. Tech., 5:657–685.
  • Wiedensohler, A., and Fissan, H. J. (1988). Aerosol Charging in High Purity Gases. J. Aerosol. Sci., 19:867–870.
  • Xue, H., Khalizov, A. F., Wang, L., Zheng, J., and Zhang, R. (2009). Effects of Coating of Dicarboxylic Acids on the Mass–Mobility Relationship of Soot Particles. Environ. Sci. Technol., 43:2787–2792.
  • Zelenyuk, A., Cai, Y., and Imre, D. (2006). From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters. Aerosol Sci. Technol., 40:197–217.
  • Zhang, C., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., and Hogan, C. J. (2012). Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). Aerosol Sci. Technol., 46:1065–1078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.