1,092
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Effect of potassium on a model soot combustion: Raman and HRTEM evidences

, , , , &
Pages 405-415 | Received 14 Oct 2015, Accepted 03 Feb 2016, Published online: 01 Mar 2016

References

  • Alfè, M., Apicella, B., Barbella, R., Rouzaud, J.-N., Tregrossi, A., and Ciajolo, A. (2009). Structure-Property Relationship in Nanostructures of Young and Mature Soot in Premixed Flames. Proc. Combust. Inst., 32:697–704.
  • Al-Qurashi, K., and Boehman, A. L. (2008). Impact of Exhaust Gas Recirculation (EGR) on the Oxidative Reactivity of Diesel Engine Soot. Combust. Flame, 155:675–695.
  • An, H. M., and McGinn, P. J. (2006). Catalytic Behavior of Potassium Containing Compounds for Diesel Soot Combustion. Appl. Catal. B: Environ., 62:46–56.
  • Aneggi, E., de Leitenburg, C., Dolcetti, G., and Trovarelli, A. (2008). Diesel Soot Combustion Activity of Ceria Promoted with Alkali Metals. Catal. Today, 136:3–10.
  • Atribak, I., Bueno-López, A., and García-García, A. (2010). Uncatalysed and Catalysed Soot Combustion under NOx + O2: Real Diesel versus Model Soots. Combust. Flame, 157:2086–2094.
  • Castiglioni, C., Tommasini, M., and Zerbi, G. (2004). Raman Spectroscopy of Polyconjugated Molecules and Materials: Confinement Effect in One and Two Dimensions. Philos. T. Roy Soc. A, 362:2425–2459.
  • Castoldi, L., Lietti, L., Nova, I., Matarrese, R., Forzatti, P., Vindigni, F., Morandi, S., Prinetto, F., and Ghiotti, G. (2010a). Alkaline- and Alkaline-Earth Oxides based Lean NOx Traps: Effect of the Storage Component on the Catalytic Reactivity. Chem. Eng. J., 161:416–423.
  • Castoldi, L., Lietti, L., Forzatti, P., Morandi, S., Ghiotti, G., and Vindigni, F. (2010b). The NOx Storage-reduction on Pt-K/Al2O3 Lean NOx Trap Catalyst. J. Catal., 276:335–350.
  • Castoldi, L., Matarrese, R., Lietti, L., and Forzatti, P. (2009). Intrinsic Reactivity of Alkaline and Alkaline-earth Metal Oxide Catalysts for Oxidation of Soot. Appl. Catal. B: Environ., 90:278–285.
  • Chen, S. G., and Yang, R. T. (1997). Unified Mechanism of Alkali and Alkaline Earth Catalyzed Gasification Reactions of Carbon by CO2 and H2O. Energy Fuels, 11:421–427.
  • Cooper, J., Jyung, H. J., and Thoss, J. E. (1990). Treatment of Diesel Exhaust Gases.US Patent 4,902,487.
  • Darcy, P., Da Costa, P., Mellottée, H., Trichard, J.-M., and Djéga-Mariadassou, G. (2007). Kinetics of Catalyzed and Non-catalyzed Oxidation of Soot from a Diesel Engine. Catal. Today, 119:252–256.
  • Delphi website (2015). Worldwide Emissions Standards 2015-2016. Available at http://delphi.com/manufacturers/auto/powertrain/emissions_standards/
  • Ferrari, A. C. (2007). Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun., 143:47–57.
  • Ferrari, A. C., and Basko, D. M. (2013). Raman Spectroscopy as Versatile Tool for Studying the Properties of Graphene. Nature Nanotechnol., 8:235–246.
  • Fino, D., Russo, N., Badini, C., Saracco, G., and Specchia, V. (2003). Effect of Active Species Mobility on Soot-Combustion over Cs-V Catalysts. AiChE J., 49:2173–2180.
  • Fino, D., Russo, N., Saracco, G., and Specchia, V. (2006). Catalytic Removal of NOx and Diesel Soot Over Nanostructured Spinel-type Oxides. J. Catal., 242:38–47.
  • Gaddam, C. K., Vander Wal, R. L., Chen, X., Yezerets, A., and Kamasamudram, K. (2016). Reconciliation of Carbon Oxidation Rates and Activation Energies based on Changing Nanostructure. Carbon, 98:545–556.
  • Gallagher, J. T., and Harker, H. (1964). Reaction of Carbon with Oxidizing Gases: Catalysis by Compounds of Iron, Cobalt and Nickel. Carbon, 2:163–173.
  • Hernández-Giménez, A. M., Lozano Castelló, D., and Bueno-López, A. (2014). Diesel Soot Combustion Catalysts: Review of Active Phases. Chem. Papers, 68:1154–1168.
  • Ivleva, N. P., Messerer, A., Yang, X., Niessner, R., and Pöschl, U. (2007). Raman Microspectroscopic Analysis of Changes in the Chemical Structure and Reactivity of Soot in a Diesel Exhaust Aftertreatment Model System. Environ. Sci. Technol., 41:3702–3707.
  • Jiménez, R., García, X., Cellier, C., Ruiz, P., and Gordon, A..L. (2006). Soot Combustion with K/MgO as Catalyst. Appl. Catal. A: Gen., 297:125–134.
  • Johnson, T. (2008). Diesel Engine Emissions and Their Control. Platinum Metals Rev., 52(1):23–37.
  • Kapteijn, F., Abbel, G., and Moulijn, J. A. (1984). CO2 Gasification of Carbon Catalysed by Alkali Metals. Fuel, 63:1036–1042.
  • Knauer, M., Carrara, M., Rothe, D., Niessner, R., and Ivleva, N. P. (2009a). Changes in Structure and Reactivity of Soot During Oxidation and Gasification by Oxygen, Studied by Micro-Raman Spectroscopy and Temperature Programmed Oxidation. Aerosol Sci. Technol., 43:1–8.
  • Knauer, M., Schuster, M. E., Su, D., Schlögl, R., Niessner, R., and Ivleva, N. P. (2009b). Soot Structure and Reactivity Analysis by Raman Microspectroscopy, Temperature-Programmed Oxidation, and High-Resolution Transmission Electron Microscopy. J. Phys. Chem. A, 113:13871–13880.
  • Krishna, K., and Makkee, M. (2006). Soot Oxidation over NOx Storage Catalysts: Activity and Deactivation. Catal. Today, 114:48–56.
  • Lapuerta, M., Oliva, F., Agudelo, J. L., and Boehman, A. L. (2012). Effect of Fuel on the Soot Nanostructure and Consequences on Loading and Regeneration of Diesel Particulate Filters. Combust. Flame, 159:844–853.
  • Le Guillou, C., Brunet, F., Irifune, T., Ohfuji, H., and Rouzaud, J.-N. (2007). Nanodiamond Nucleation Below 2273 K at 15 GPa from Carbons with Different Structural Organizations. Carbon, 45:636–648.
  • Liu, D., Ullman, F. G., and Hardy, J. R. (1992). Raman Scattering and Lattice-dynamical Calculations of Crystalline KNO3. Phys. Rev. B, 45:2142–2147.
  • Liu, J., Zhao, Z., Xu, C., Duan, A., and Jiang, G. (2010). Comparative Study on Physicochemical Properties and Combustion Behaviors of Diesel Particulates and Model Soot. Energy Fuels, 24:3778–3783.
  • López-Suárez, F. E., Bueno-López, A., Illán-Gómez, M. J., Ura, B., and Trawczynski, J. (2009). Potassium Stability in Soot Combustion Perovskite Catalysts. Top. Catal. 52:2097–2100.
  • López-Suárez, F. E., Bueno-López, A., Illán-Gómez, M. J., Ura, B., and Trawczynski, J. (2011). Study of the Uncatalyzed and Catalyzed Combustion of Diesel and Biodiesel Soot. Catalysis Today, 176:182–186.
  • Matarrese, R., Castoldi, L., Lietti, L., and Forzatti, P. (2007). High Performances of Pt-K/Al2O3 Versus Pt-Ba/Al2O3 LNT Catalysts in the Simultaneous Removal of NOx and Soot. Top. Catal., 42/43:293–297.
  • McKee, D. W. (1983). Mechanisms of the Alkali Metal Catalysed Gasification of Carbon. Fuel, 62:170–175.
  • Moulijn, J. A., Cerfontain, M. B., and Kapteijn, F. (1984). Mechanism of the Potassium CO2 Catalysed Gasification of Carbon in CO2. Fuel, 63:1043–1047.
  • Mul, G., Neeft, J. P. A., Kapteijn, F., Makkee, M., and Moulijn, J. A. (1995). Soot Oxidation Catalyzed by a Cu/K/Mo/Cl Catalyst: Evaluation of the Chemistry and Performance of the Catalysts. Appl. Catal. B: Environ., 6:339–352.
  • Müller, J.-O., Su, D. S., Wild, U., and Schlögl, R. (2007). Bulk and Surface Structural Investigations of Diesel Engine Soot and Carbon Black. Phys. Chem. Chem. Phys., 9:4018–4025.
  • Neeft, J. P. A., Makkee, M., and Moulijn, J. A. (1996a). Diesel Particulate Emission Control. Fuel Process. Technol., 47:1–69.
  • Neeft, J. P. A., Makkee, M., and Moulijn, J. A. (1996b). Catalysts for the Oxidation of Sootfrom Diesel Exhaust Gases. I. An Exploratory Study. Appl. Catal. B: Environ., 8:57–78.
  • Nejar, N., Makkee, M., and Illán-Gómez, N. J. (2007). Catalytic Removal of NOx and Soot from Diesel Exhaust: Oxidation Behaviour of Carbon Materials used as Model Soot. Appl. Catal. B: Environ., 75:11–16.
  • Ogura, M., Morozumi, K., Elangovan, S. P., Tanada, H., Ando, H., and Okubo, T. (2008). Potassium-doped Sodalite: A Tectoaluminosilicate for the Catalytic Material Towards Continuous Combustion of Carbonaceous Matters. Appl. Catal. B: Environ., 77:294–299.
  • Palotas, A. B., Rainey, L. C., Feldermann, C. J., Sarofim, A. F., and Sande, J. B. V. (1996). Soot Morphology: An Application of Image Analysis in High-resolution Transmission Electron Microscopy. Microsc. Res. Technol., 33:266–278.
  • Pawlyta, M., Rouzaud, J.-N., and Duber, S. (2015). Raman Microspectroscopy Characterization of Carbon Blacks: Spectral Analysis and Structural Information. Carbon, 84:479–490.
  • Pieta, I. S., García-Diéguez, M., Herrera, C., Larrubia, M. A., and Alemany, L. J. (2010). In situ DRIFT–TRM Study of Simultaneous NOx and Soot Removal over Pt–Ba and Pt–K NSR Catalysts. J. Catal., 270:256–267.
  • Querini, C. A., Cornaglia, L. M., Ulla, M. A., and Miró, E. E. (1999). Catalytic Combustion of Diesel Soot on Co,K/MgO Catalysts. Effect of the Potassium Loading on Activity and Stability. Appl. Catal. B: Environ., 20:165–177.
  • Radovic, L. R., Walker Jr., P. L., and Jenkins, R. G. (1983). Importance of Catalyst Dispersion in the Gasification of Lignite Chars. J. Catal., 82:382–394.
  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Poeschl, U. (2005). Raman Microspectroscopy of Soot and Related Carbonaceous Materials. Carbon, 43:1731–1742.
  • Setiabudi, A., Makkee, M., and Moulijn, J. A. (2004). The Role of NO2 and O2 in the Accelerated Combustion of Soot in Diesel Exhaust Gases. Appl. Catal. B: Environ., 50:185–194.
  • Stanmore, B., Brilhac, J. F., and Gilot, P. (2001). The Oxidation of Soot: A Review of Experiments, Mechanisms and Models. Carbon, 39:2247–2268.
  • Stanmore, B., Tschamber, V., and Brilhac, J. F. (2008). Oxidation of Carbon by NOx, with Particular Reference to NO2 and N2O. Fuel, 87:131–146.
  • Strzelec, A., Toops, T. J., and Daw, C. S. (2013). Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels. Energy Fuels, 27:3944–3951.
  • Tunistra, F., and Koenig, J. L. (1970). Raman Spectrum of Graphite. J. Chem. Phys., 53:1126–1130.
  • Vázquez-Santos, B. M., Geissler, E., László, K., Rouzaud, J-N., Martínez-Alonso, A., and Tascón, J. M. D. (2012). Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers. J. Phys. Chem. C, 116:257–268.
  • Wang-Hansen, C., Kamp, C. J., Skoglundh, M., Andersson, B., and Carlsson, P. A. (2011). Experimental Method for Kinetic Studies of Gas Solid Reactions: Oxidation of Carbonaceous Matter. J. Phys. Chem. C 115:16098–16108.
  • Yezerets, A., Currier, N. W., Kim, D. H., Eadler, H. A., Epling, W. S., and Peden, C. H. F. (2005). Differential Kinetic Analysis of Diesel Particulate Matter (Soot) Oxidation by Oxygen Using a Step–response Technique. Appl. Catal. B: Environ., 61:120–129.
  • Zhang, Z., Zhang, Y., Wang, Z., and Gao, X. (2010). Catalytic Performance and Mechanism of Potassium-supported Mg–Al Hydrotalcite Mixed Oxides for Soot Combustion with O2. J. Catal., 271:12–21.
  • Zhu, Z. H., Lu, G. Q., and Yang, R. T. (2000). New Insights into Alkali-Catalyzed Gasification Reactions of Carbon: Comparison of N2O Reduction with Carbon over Na and K Catalysts. J. Catal., 192:77–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.