1,161
Views
34
CrossRef citations to date
0
Altmetric
Articles

Control of the radial distribution of chemical components in spray-dried crystalline microparticles

&
Pages 1130-1142 | Received 13 Apr 2016, Accepted 28 Jun 2016, Published online: 26 Jul 2016

References

  • Ai, H., Pink, J. J., Shuai, X., Boothman, D. A., and Gao, J. (2005). Interactions Between Self‐Assembled Polyelectrolyte Shells and Tumor Cells. J. Biomed. Mater Res. A, 73:303–312.
  • Aman, Z. M., Joshi, S. E., Sloan, E. D., Sum, A. K., and Koh, C. A. (2012). Micromechanical Cohesion Force Measurements to Determine Cyclopentane Hydrate Interfacial Properties. J. Colloid Interf. Sci., 376:283–288.
  • Baldelli, A., Boraey, M. A., Nobes, D. S., and Vehring, R. (2015). Analysis of the Particle Formation Process of Structured Microparticles. Mol. Pharmaceut., 12:2562–2573.
  • Baldelli, A., Power, R. M., Miles, R. E. H., Reid, J. P., and Vehring, R. (2016). Effect of Crystallization Kinetics on the Properties of Spray Dried Microparticles. Aerosol Sci. Tech., 50:693–704.
  • Beck-Broichsitter, M., Dalla-Bona, A. C., Kissel, T., Seeger, W., and Schmehl, T. (2014). Polymer Nanoparticle-Based Controlled Pulmonary Drug Delivery. Drug Delivery System. Vol. 1141. Springer, New York, pp. 133–145.
  • Belotti, S., Rossi, A., Colombo, P., Bettini, R., Rekkas, D., Politis, S., and Buttini, F. (2015). Spray-Dried Amikacin Sulphate Powder for Inhalation in Cystic Fibrosis Patients: The Role of Ethanol in Particle Formation. Eur. J. Pharm. Biopharm., 93:165–172.
  • Boraey, M. A., Hoe, S., Sharif, H., Miller, D. P., Lechuga-Ballesteros, D., and Vehring, R. (2013). Improvement of the Dispersibility of Spray-Dried Budesonide Powders Using Leucine in an Ethanol–Water Cosolvent System. Powder Technol., 236:171–178.
  • Boraey, M. A., and Vehring, R. (2014). Diffusion Controlled Formation of Microparticles. J. Aerosol Sci., 67:131–143.
  • Brooker, M. (1978). Raman Spectroscopic Investigations of Structural Aspects of the Different Phases of Lithium Sodium and Potassium Nitrate. J. Phys. Chem. Solids, 39:657–667.
  • Clark, A. R. (1991). Metered Atomisation for Respiratory Drug Delivery. PhD Dissertation, Loughborough University, Leicestershire, UK, https://dspace.lboro.ac.uk/2134/7413 © Andrew Reginald Clark.
  • De Villiers, S., Lindblom, N., Kalayanov, G., Gordon, S., Malmerfelt, A., Johansson, A., and Svensson, T. (2002). Active Immunization against Nicotine Suppresses Nicotine-Induced Dopamine Release in the Rat Nucleus Accumbens Shell. Respiration, 69:247–253.
  • Evans, R., Deng, Z., Rogerson, A. K., McLachlan, A. S., Richards, J. J., Nilsson, M., and Morris, G. A. (2013). Quantitative Interpretation of Diffusion‐Ordered NMR Spectra: Can We Rationalize Small Molecule Diffusion Coefficients?. Angew. Chem. Int. Edit., 52:3199–3202.
  • Filková, I., Huang, L. X., and Mujumdar, A. S. (2014). 9 Industrial Spray Drying Systems. Handbook of Industrial Drying. CRC Press, Boca Raton, pp. 191–225.
  • Gambill, W. (1959). How to Estimate Mixtures Viscosities. Chem. Eng., 66:151–152.
  • Goldstein, J., Newbury, D. E., Echlin, P., Joy, D. C., Romig Jr, A. D., Lyman, C. E., and Lifshin, E. (2012). Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. Springer US, New York.
  • Gonzalez, R., Zapatero, L., Caravaca, F., and Carreira, J. (1991), Identification of Soybean Proteins Responsible for Respiratory Allergies. Int. Arch. Allergy Imm., 95:53–57.
  • Graber, T., Taboada, M., Alvarez, M., and Schmidt, E. (1999). Determination of Mass Transfer Coefficients for Crystal Growth of Nitrate Salts. Cryst. Res. Technol., 34:1269–1277.
  • Hakuta, Y., Hayashi, H., and Arai, K. (2003). Fine Particle Formation Using Supercritical Fluids. Curr. Opin. Solid S M., 7:341–351.
  • Hoe, S., Ivey, J. W., Boraey, M. A., Shamsaddini-Shahrbabak, A., Javaheri, E., Matinkhoo, S., and Vehring, R. (2014). Use of a Fundamental Approach to Spray-Drying Formulation Design to Facilitate the Development of Multi-Component Dry Powder Aerosols for Respiratory Drug Delivery. Pharm. Res., 31:449–465.
  • Holden, A., and Morrison, P. (1982). Crystals and Crystal Growing. MIT Press, Cambridge, MA.
  • Islan, G., Cacicedo, M., Bosio, V., and Castro, G. (2015). Development and Characterization of New Enzymatic Modified Hybrid Calcium Carbonate Microparticles to Obtain Nano-Architectured Surfaces for Enhanced Drug Loading. J. Colloid Interf. Sci., 439:76–87.
  • Isono, T. (1984). Density, Viscosity, and Electrolytic Conductivity of Concentrated Aqueous Electrolyte Solutions at Several Temperatures. Alkaline-Earth Chlorides, Lanthanum Chloride, Sodium Chloride, Sodium Nitrate, Sodium Bromide, Potassium Nitrate, Potassium Bromide, and Cadmium Nitrate. J. Chem. Eng. Data, 29:45–52.
  • Ko, J., Park, H., Hwang, S., Park, J., and Lee, J. (2002). Preparation and Characterization of Chitosan Microparticles Intended for Controlled Drug Delivery. Int. J. Pharm., 249:165–174.
  • Kracek, F., Posnjak, E., and Hendricks, S. (1931). Gradual Transition in Sodium Nitrate. II. The Structure at Various Temperatures and Its Bearing on Molecular Rotation. J. Am. Chem. Soc., 53:3339–3348.
  • Laliberté, M. (2007). Model for Calculating the Viscosity of Aqueous Solutions. J. Chem. Eng. Data, 52:321–335.
  • Lechuga-Ballesteros, D., and Miller, D. P. (2015). Advances in Respiratory and Nasal Drug Delivery. Mol. Pharm., 12:2561–2561.
  • Longest, P. W., Spence, B. M., Holbrook, L. T., Mossi, K. M., Son, Y.-J., and Hindle, M. (2012). Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery. J. Aerosol Sci., 51:66–80.
  • Mahiuddin, S., and Ismail, K. (1996). Temperature and Concentration Dependence of the Viscocity of Aqueous Sodium Nitrate and Sodium Thiosulphate Electrolytic Systems. Fluid Phase Equilib., 123:231–243.
  • Niwa, T., Mizutani, D., and Danjo, K. (2012). Spray Freeze-Dried Porous Microparticles of a Poorly Water-Soluble Drug for Respiratory Delivery. Chem. Pharmaceut. Bull., 60:870–876.
  • Oriakhi, C. O. (2009). Chemistry in Quantitative Language: Fundamentals of General Chemistry Calculations. Oxford University Press, USA.
  • Pasquali, I., Bettini, R., and Giordano, F. (2006). Solid-State Chemistry and Particle Engineering with Supercritical Fluids in Pharmaceutics. Eur. J. Pharm. Sci., 27:299–310.
  • Patravale, V., and Kulkarni, R. (2004). Nanosuspensions: A Promising Drug Delivery Strategy. J. Pharm. Pharmacol., 56:827–840.
  • Pechkova, E., Peter, W., Bragazzi, N., Fernanda, F., and Nicolini, C. (2015). Nanoprobe Nappa Arrays for the Nanoconductimetric Analysis of Ultra-Low-Volume Protein Samples Using Piezoelectric Liquid Dispensing Technology. NanoWorld J., 1:26–31.
  • Pilcer, G., and Amighi, K. (2010). Formulation Strategy and Use of Excipients in Pulmonary Drug Delivery. Int. J. Pharm., 392:1–19.
  • Ragab, D. M., and Rohani, S. (2009). Particle Engineering Strategies Via Crystallization for Pulmonary Drug Delivery. Org. Process Res. Dev., 13:1215–1223.
  • Robinson, J. W. (1991). Practical Handbook of Spectroscopy. CRC Press, Boca Raton, FL.
  • Sharma, S. K. (2008). Atomic and Nuclear Physics. Pearson Education, India.
  • Shekunov, B. Y., and York, P. (2000). Crystallization Processes in Pharmaceutical Technology and Drug Delivery Design. J. Cryst. Growth, 211:122–136.
  • Shen, T., Mitra, S., Prask, H., and Trevino, S. (1975). Order-Disorder Phenomenon in Sodium Nitrate Studied by Low-Frequency Raman Scattering. Phys. Rev. B, 12:4530–4533.
  • Shoyele, S. A., and Cawthorne, S. (2006). Particle Engineering Techniques for Inhaled Biopharmaceuticals. Adv. Drug Deliv. Rev., 58:1009–1029.
  • Slominski, C. G., Kraynik, A. M., and Brady, J. F. (2014). The Einstein Shear Viscosity Correction for Non No-Slip Hyperspheres. J. Colloid Interf. Sci., 430:302–304.
  • Sung, J. C., Pulliam, B. L., and Edwards, D. A. (2007). Nanoparticles for Drug Delivery to the Lungs. Trends Biotechnol., 25:563–570.
  • Tang, I., and Munkelwitz, H. (1994). Water Activities, Densities, and Refractive Indices of Aqueous Sulfates and Sodium Nitrate Droplets of Atmospheric Importance. J. Geophys. Res. Atmos. (1984–2012), 99:18801–18808.
  • Vehring, R., Foss, W. R., and Lechuga-Ballesteros, D. (2007). Particle Formation in Spray Drying. J. Aerosol Sci., 38:728–746.
  • Vicente, J., Pinto, J., Menezes, J., and Gaspar, F. (2013). Fundamental Analysis of Particle Formation in Spray Drying. Powder Technol., 247:1–7.
  • Vladisavljević, G. T., Shahmohamadi, H., Das, D. B., Ekanem, E. E., Tauanov, Z., and Sharma, L. (2014). Glass Capillary Microfluidics for Production of Monodispersed Poly (Dl-Lactic Acid) and Polycaprolactone Microparticles: Experiments and Numerical Simulations. J. Colloid Interf. Sci., 418:163–170.
  • Wang, H., Boraey, M. A., Williams, L., Lechuga-Ballesteros, D., and Vehring, R. (2014). Low-Frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms. Int. J. Pharm., 469:197–205.
  • Young, P. M., Salama, R. O., Zhu, B., Phillips, G., Crapper, J., Chan, H.-K., and Traini, D. (2015). Multi-Breath Dry Powder Inhaler for Delivery of Cohesive Powders in the Treatment of Bronchiectasis. Drug Dev. Ind. Pharm., 41:859–865.
  • Zhang, J., Wu, L., Chan, H.-K., and Watanabe, W. (2011). Formation, Characterization, and Fate of Inhaled Drug Nanoparticles. Adv. Drug Deliv. Rev., 63:441–455.
  • Zhang, Q.-N., Zhang, Y., Cai, C., Guo, Y.-C., Reid, J. P., and Zhang, Y.-H. (2014). In Situ Observation on the Dynamic Process of Evaporation and Crystallization of Sodium Nitrate Droplets on a ZnSe Substrate by FTIR-ATR. J. Phys. Chem. A, 118:2728–2737.
  • Zhang, Y., and Stangle, G. C. (1994). Preparation of Fine Multicomponent Oxide Ceramic Powder by a Combustion Synthesis Process. J. Mater. Res., 9:1997–2004.
  • Zhou, Q. T., Leung, S. S. Y., Tang, P., Parumasivam, T., Loh, Z. H., and Chan, H.-K. (2015). Inhaled Formulations and Pulmonary Drug Delivery Systems for Respiratory Infections. Adv. Drug Deliv. Rev., 85:83–99.
  • Zhu, J., and Hayward, R. C. (2012). Interfacial Tension of Evaporating Emulsion Droplets Containing Amphiphilic Block Copolymers: Effects of Solvent and Polymer Composition. J. Colloid Interf. Sci., 365:275–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.