817
Views
3
CrossRef citations to date
0
Altmetric
Articles

Modeling of submicron particle filtration in an electret monolith filter with rectangular cross-section microchannels

, , &
Pages 1033-1043 | Received 29 Jan 2016, Accepted 23 Jul 2016, Published online: 18 Aug 2016

References

  • Arkilic, E. B., Schmidt, M. A., and Breuer, K. S. (1997). Gaseous Slip Flow in Microchannels. J. Microelectromechanical Syst., 6:167–178.
  • Bahrami, M., Yovanovich, M. M., and Culham, J. R. (2006). Pressure Drop of laminar, Fully Developed Flow in Microchannels of Arbitrary Cross-Section. ASME J. Fluids Eng., 128:1034–1044.
  • Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev., 94:511–525.
  • Chen, C.-S. (2004). Numerical Method for Predicting Three-Dimensional Steady Compressible Flow in Long Microchannels. J. Micromech. Microeng., 14:1091–1100.
  • Chen, H., Chen, S., and Matthaeus, W. H. (1992). Recovery of the Navier–Stokes Equations Using a Lattice-Gas Boltzmann Method. Phys. Rev. A, 45:5339–5342.
  • Chen, P. J., Shih, C. Y., and Tai, Y. C. (2006). Design, Fabrication and Characterization of Monolithic Embedded Parylene Microchannels in Silicon Substrate. Lab. Chip, 6:803–810.
  • Clague, S. D., and Phillips, R. J. (1997). A Numerical Calculation of the Hydraulic Permeability of Three Dimensional Disordered Fibrous Media. Phys. Fluids, 9:1562.
  • Duan, Z., and Muzychka, Y. S. (2010). Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels. J. Fluids Eng., 132:011201.
  • Fotovati, S., Tafreshi, H. V., and Pourdeyhimi, B. (2010). Influence of Fiber Orientation Distribution on Performance of Aerosol Filtration Media. Chem. Eng. Sci., 65:5285–5293.
  • Gangadharan, S., Kuznetsov, A. V., Zhu, H., Hinestroza, J., and Jasper, W. J. (2012). Modeling of Cross-Flow Across an Electrostatically Charged Monolith Filter. Particul. Sci. Technol., 30:461–473.
  • Guo, Z. L., Zheng, C. G., and Shi, B. C. (2002). Non-Equilibrium Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method. Chinese Phys., 11:366–374.
  • He, X. Y., Zou, Q. S., Luo, L. S., and Dembo, M. (1997). Analytic Solutions of Simple Flows and Analysis of Nonslip Boundary Conditions for the Lattice Boltzmann BGK Model. J. Stat. Phys., 87:115–136.
  • Hinds, W. C. (1999). Aerosol Technology Property, Behavior, and Measurement of Airborne Particles, 2nd ed. Wiley, New York.
  • Hung, C. H., and Leung, W. W. F. (2011). Filtration of Nano-Aerosol using Nanofiber Filter Under Low Peclet Number and Transitional Flow Regime. Sep. Purif. Technol., 79:34–42.
  • Jeong, N., Lin, C. L., and Choi, D. H. (2006). Lattice Boltzmann Study of Three-Dimensional Gas Microchannel Flows. J. Micromech. Microeng., 16:1749–1759.
  • Leung, W. W. F, Hung, C. H., and Yuen, P. T. (2010). Effect of Face Velocity, Nanofiber Packing Density and Thickness on Filtration Performance of Filters with Nanofibers Coated on a Substrate. Sep. Purif. Technol., 71:30–37.
  • Li, A., and Ahmadi, G. (1992). Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow. Aerosol Sci. Tech., 16:209–226.
  • Li, K., and Jo, Y. M. (2010). Dust Collection by a Fiber Bundle Electret Filter in an MVAC System. Aerosol Sci. Tech., 44:578–2010.
  • Mannan, S. (2005). Lees' Loss Prevention in the Process Industries, 3rd ed. Butterworth-Heinemann, Oxford, UK.
  • Morini, G. L., and Spiga, M. (1998). Slip Flow in Rectangular Microtubes. Microscale Thermophys. Eng., 2:273–282.
  • Morini, G. L., Spiga, M., and Tartarini, P. (2004). The Rarefaction Effects on the Friction Factor of Gas Flow in Microchannels. Superlattices Microstruct., 35:587–599.
  • Oh, Y. W., Jeon, K. J., Jung, A. I., and Jung, Y. W. (2002). A Simulation Study on the Collection of Submicron Particles in a Unipolar Charged Fiber. Aerosol Sci. Tech., 36:573–582.
  • Ozhan, C., Fuster, D., and Costa, P. D. (2014). Multi-Scale Flow Simulation of Automobile Catalytic Converters. Chem. Eng. Sci., 116:161–171.
  • Podgorski, A. (2010). Protection of the Respiratory System Against Nanoparticles Inhalation. in Nanoparticles in Medicine and Environment, J. C. M. Marijnissen and L. Gradon´, eds. Springer, Dordrecht, Chapter 14, pp. 251–277.
  • Podgorski, A., Bałazy, A., and Gradon´, L. (2006). Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters. Chem. Eng. Sci., 61:6804–6815.
  • Qian, Y. H., D'Humières, D., and Lallemand, P. (1992). Lattice BGK Models for Navier–Stokes Equation. Europhys. Lett., 17:479–484.
  • Rader, D. J., and Marple, V. A. (1985). Effect of Ultra-Stokesian Drag and Particle Interception on Impaction Characteristics. Aerosol Sci. Technol., 4:141–156.
  • Renksizbulut, M., Niazmand, H., and Tercan, G. (2006). Slip-Flow and Heat Transfer in Rectangular Microchannels with Constant Wall Temperature. Int. J. Therm. Sci., 45:870–881.
  • Shi, Y., Zhao, T. S., and Guo, Z. (2007). Lattice Boltzmann Simulation of Dense Gas Flows in Microchannels. Phys. Rev. E, 76:016707.
  • Succi, S., D'Humières, D., Qian, Y. H., and Orzag, S. A. (1993). On the Small-Scale Dynamical Behavior of Lattice BGK and Lattice Boltzmann Schemes. J. Sci. Comput., 8:219–230.
  • Tahir, M. A., and Tafreshi, H. V. (2009). Influence of Fiber Orientation on the Transverse Permeability of Fibrous Media. Phys. Fluids, 21:083604.
  • Tang, G. H., Tao, W. Q., and He, Y. L. (2004). Lattice Boltzmann Method for Simulating Gas Flow in Micro-Channels. Int. J. Mod. Phys. C, 15:335–347.
  • Tomadakis, M., and Robertson, J. T. (2005). Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results. J. Compos. Mater., 39:163–188.
  • Verhaeghe, F., Luo, L. S., and Blanpain, B. (2009). Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime. J. Comput. Phys., 228:147–157.
  • Wiedensohler, A. (1988). An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Range. J. Aerosol Sci., 19:387–389.
  • Wu, M., Kuznetsov, A. V., and Jasper, W. J. (2010). Modeling of Particle Trajectories in an Electro-Statically Charged Channel. Phys. Fluids, 22:043301.
  • Wu, M., Jasper, W. J., Kuznetsov, A. V., Johnson, N., and Rasipuram, S. C. (2013). Submicron Particle Filtration in Monolith Filters—A Modeling and Experimental Study. J. Aerosol Sci., 57:96–113.
  • Yang, X., Yang, J. M., Tai, Y. C., and Ho, C. M. (1999). Micromachined Membrane Particle Filters. Sensor. Actuator., 73:184–191.
  • Yang, J., Ma, H., Yamamoto, Y., Yu, J., Xu, G., Zhang, Z., and Suzuki, Y. (2013). SCR Catalyst Coated on Low-Cost Monolith Support for Flue Gas Denigration of Industrial Furnaces. Chem. Eng. J., 230:513–521.
  • Yang S., and Lee, G. W. M. (2005). Filtration Characteristics of a Fibrous Filter Pretreated with Anionic Surfactants for Monodisperse Solid Aerosols. J. Aerosol Sci., 36:419–37.
  • Zhang, Y., Qin, R., and Emerson, D. R. (2005). Lattice Boltzmann Simulation of Rarefied Gas Flows in Micro-Channels. Phys. Rev., 71:47702.
  • Zou, Q., and He, X. (1997). On Pressure and Velocity Flow Boundary Conditions and Bounceback for the Lattice Boltzmann BGK Model. Phys. Fluids, 9:1591–1598.
  • Zou, Q., Hou, S., Chen, S., and Doolen, G. D. (1995). An Improved Incompressible Lattice Boltzmann Model for Time—Independent Flows. J. Stat. Phys., 81:35–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.