839
Views
7
CrossRef citations to date
0
Altmetric
Articles

Characterization of structure of single particles from various automobile engines under steady-state conditions

, , , , , & show all
Pages 1055-1067 | Received 11 Feb 2016, Accepted 21 Jul 2016, Published online: 15 Aug 2016

References

  • Aikawa, K., and Jetter, J. J. (2014). Impact of Gasoline Composition on Particulate Matter Emissions from a Direct-Injection Gasoline Engine: Applicability of the Particulate Matter Index. Int. J. Engine Res., 15:298–306.
  • Amann, C. A., and Siegla, D. C. (1982). Diesel Particulates—What They are and Why. Aerosol Sci. Technol., 1:73–101.
  • Barone, T. L., Storey, J. M. E., Youngquist, A. D., and Szybist, J. P. (2012). An Analysis of Direct-Injection Spark-Ignition (DISI) Soot Morphology. Atmos. Environ., 49:268–274.
  • Barone, T. L., and Zhu, Y. F. (2008). The Morphology of Ultrafine Particles on and Near Major Freeways. Atmos. Environ., 42:6749–6758.
  • Bond, T. C., Habib, G., and Bergstrom, R. W. (2006). Limitations in the Enhancement of Visible Light Absorption Due to Mixing State. J. Geophys. Res-Atmos., 111. doi:10.1029/2006JD007315.
  • Brasil, A. M., Farias, T. L., and Carvalho, M. G. (1999). A Recipe for Image Characterization of Fractal-Like Aggregates. J Aerosol Sci., 30:1379–1389.
  • Dastanpour, R., and Rogak, S. N. (2014). Observations of a Correlation Between Primary Particle and Aggregate Size for Soot Particles. Aerosol Sci. Technol., 48:1043–1049.
  • Donaldson, K., Borm, P. J. A., Oberdorster, G., Pinkerton, K. E., Stone, V., and Tran, C. L. (2008). Concordance Between in vitro and in vivo Dosimetry in the Proinflammatory Effects of Low-Toxicity, Low-Solubility Particles: The Key Role of the Proximal Alveolar Region. Inhal. Toxicol., 20:53–62.
  • Donaldson, K., Stone, V., Clouter, A., Renwick, L., and MacNee, W. (2001). Ultrafine Particles. Occup. Environ. Med., 58:211–216.
  • Ehara, K., Hagwood, C., and Coakley, K. J. (1996). Novel Method to Classify Aerosol Particles According to Their Mass-to-Charge Ratio—Aerosol Particle Mass Analyser. J Aerosol Sci., 27:217–234.
  • Farron, C., Matthias, N., Foster, D. E., Andrie, M., Krieger, R., Najt, P., Narayanaswamy, K., Solomon, A., and Zelenyuk, A. (2011). Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine. SAE Int. 2011-01-1220. doi:10.4271/2011#01#1220.
  • Fujitani, Y., Hirano, S., Kobayashi, S., Tanabe, K., Suzuki, A., Furuyama, A., and Kobayashi, T. (2009). Characterization of Dilution Conditions for Diesel Nanoparticle Inhalation Studies. Inhal. Toxicol., 21:200–209.
  • Fujitani, Y., Saitoh, K., Fushimi, A., Takahashi, K., Hasegawa, S., Tanabe, K., Kobayashi, S., Furuyama, A., Hirano, S., and Takami, A. (2012b). Effect of Isothermal Dilution on Emission Factors of Organic Carbon and n-alkanes in the Particle and Gas Phases of Diesel Exhaust. Atmos. Environ., 59:389–397.
  • Fujitani, Y., Sakamoto, T., and Misawa, K. (2012a). Quantitative Determination of Composition of Particle Type by Morphology of Nanoparticles in Diesel Exhaust and Roadside Atmosphere. Civil & Environmental Engineering S1:002.
  • Fujitani, Y., Sugaya, Y., Hashiguchi, M., Furuyama, A., Hirano, S., and Takami, A. (2015). Particle Deposition Efficiency at Air–Liquid Interface of a Cell Exposure Chamber. J Aerosol Sci., 81:90–99.
  • Fuller, K. A., Malm, W. C., and Kreidenweis, S. M. (1999). Effects of Mixing on Extinction by Carbonaceous Particles. J. Geophys. Res., 104:15941.
  • Fushimi, A., Kondo, Y., Kobayashi, S., Fujitani, Y., Saitoh, K., Takami, A., and Tanabe, K. (2016). Chemical Composition and Source of Fine and Nanoparticles from Recent Direct Injection Gasoline Passenger Cars: Effects of Fuel and Ambient Temperature. Atmos. Environ., 124:77–84.
  • Fushimi, A., Saitoh, K., Fujitani, Y., Hasegawa, S., Takahashi, K., Tanabe, K., and Kobayashi, S. (2011). Organic-Rich Nanoparticles (diameter: 10–30 nm) in Diesel Exhaust: Fuel and Oil Contribution Based on Chemical Composition. Atmos. Environ., 45:6326–6336.
  • Geller, M., Biswas, S., and Sioutas, C. (2006). Determination of Particle Effective Density in Urban Environments with a Differential Mobility Analyzer and Aerosol Particle Mass Analyzer. Aerosol Sci. Technol., 40:709–723.
  • Ghazi, R., Tjong, H., Soewono, A., Rogak, S. N., and Olfert, J. S. (2013). Mass, Mobility, Volatility, and Morphology of Soot Particles Generated by a McKenna and Inverted Burner. Aerosol Sci. Technol., 47:395–405.
  • Graves, B., Olfert, J., Patychuk, B., Dastanpour, R., and Rogak, S. (2015). Characterization of Particulate Matter Morphology and Volatility from a Compression-Ignition Natural-Gas Direct-Injection Engine. Aerosol Sci. Technol., 49:589–598.
  • Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd edn, Wiley, New York, p. 239.
  • Kasper, G. (1982). Dynamics and Measurement of Smokes. I Size Characterization of Nonspherical Particles. Aerosol Sci. Technol., 1:187–199.
  • Kayes, D., and Hochgreb, S. (1999). Mechanisms of Particulate Matter Formation in Spark-Ignition Engines. 3. Model of PM Formation. Environ. Sci. Technol., 33:3978–3992.
  • Kobayashi, S., Kondo, Y., Fushimi, A., Fujitani, Y., Saitoh, K., Takami, A., and Tanabe, K. (2012). Particulate Matter Emissions from Direct Injection Gasoline Passenger Car. Trans. Soc. Automot. Eng. Japan, 43:1009–1014 (in Japanese).
  • Lee, J. W., Do, H. S., Kweon, S. I., Park, K. K., and Hong, J. H. (2010). Effect of Various LPG Supply Systems on Exhaust Particle Emission in Spark-Ignited Combustion Engine. Int. J. Auto Tech-Kor., 11:793–800.
  • Lee, K. O., Seong, H., Sakai, S., Hageman, M., and Rothamer, D. (2013). Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends. SAE Int. 2013-24-0185. doi:10.4271/2013-24-0185.
  • Lin, G.-Y., Liao, B.-X., Tzeng, N.-J., Chen, C.-W., Uang, S.-N., Chen, S.-C., Pui, D. Y. H., and Tsai, C.-J. (2014). The Effect of Nanoparticle Convection-Diffusion Loss on the Transfer Function of an Aerosol Particle Mass Analyzer. Aerosol Sci. Technol., 48:583–592.
  • Maricq, M. M. (2007). Chemical Characterization of Particulate Emissions from Diesel Engines: A Review. J. Aerosol Sci., 38:1079–1118.
  • Maricq, M. M., Szente, J. J., and Jahr, K. (2012). The Impact of Ethanol Fuel Blends on PM Emissions from a Light-Duty GDI Vehicle. Aerosol Sci. Technol., 46:576–583.
  • Maricq, M. M., and Xu, N. (2004). The Effective Density and Fractal Dimension of Soot Particles from Premixed Flames and Motor Vehicle Exhaust. J Aerosol Sci., 35:1251–1274.
  • Mathis, U., Kaegi, R., Mohr, M., and Zenobi, R. (2004). TEM Analysis of Volatile Nanoparticles from Particle Trap Equipped Diesel and Direct-Injection Spark-Ignition Vehicles. Atmos. Environ., 38:4347–4355.
  • Mathis, U., Mohr, M., Kaegi, R., Bertola, A., and Boulouchos, K. (2005). Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter. Environ. Sci. Technol., 39:1887–1892.
  • Miller, A. L., Stipe, C. B., Habjan, M. C., and Ahlstrand, G. G. (2007). Role of Lubrication Oil in Particulate Emissions from a Hydrogen-Powered Internal Combustion Engine. Environ. Sci. Technol., 41:6828–6835.
  • Momenimovahed, A., and Olfert, J. S. (2015). Effective Density and Volatility of Particles Emitted from Gasoline Direct Injection Vehicles and Implications for Particle Mass Measurement. Aerosol Sci. Technol., 49:1051–1062.
  • Momenimovahed, A., Olfert, J. S., Checkel, M. D., Pathak, S., Sood, V., Robindro, L., Singal, S. K., Jain, A. K., and Garg, M. O. (2013). Effect of Fuel Choice on Nanoparticle Emission Factors in LPG-Gasoline bi-Fuel Vehicles. Int J Auto Tech-Kor., 14:1–11.
  • Myung, C. L., Kim, J., Choi, K., Hwang, I. G., and Park, S. (2012). Comparative Study of Engine Control Strategies for Particulate Emissions from Direct Injection Light-Duty Vehicle Fueled with Gasoline and Liquid Phase Liquefied Petroleum Gas (LPG). Fuel, 94:348–355.
  • Nakao, S., Shrivastava, M., Nguyen, A., Jung, H. J., and Cocker, D. (2011). Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber. Aerosol Sci. Technol., 45:964–972.
  • Nakashima, Y., Kamei, N., Kobayashi, S., and Kajii, Y. (2010). Total OH Reactivity and VOC Analyses for Gasoline Vehicular Exhaust with a Chassis Dynamometer. Atmos. Environ., 44:468–475.
  • Oberdorster, G. (2000). Toxicology of Ultrafine Particles: in vivo Studies. Philos. Trans. A Math. Phys. Eng. Sci., 358:2719–2739.
  • Okada, K., and Heintzenberg, J. (2003). Size Distribution, State of Mixture and Morphology of Urban Aerosol Particles at Given Electrical Mobilities. J Aerosol Sci., 34:1539–1553.
  • Olfert, J. S., Symonds, J. P. R., and Collings, N. (2007). The Effective Density and Fractal Dimension of Particles Emitted from a Light-Duty Diesel Vehicle with a Diesel Oxidation Catalyst. J Aerosol Sci., 38:69–82.
  • Park, K., Cao, F., Kittelson, D. B., and McMurry, P. H. (2003). Relationship Between Particle Mass and Mobility for Diesel Exhaust Particles. Environ. Sci. Technol., 37:577–583.
  • Park, K., Kittelson, D. B., and McMurry, P. H. (2004). Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility. Aerosol Sci. Technol., 38:881–889.
  • Pirjola, L., Karjalainen, P., Heikkila, J., Saari, S., Tzamkiozis, T., Ntziachristos, L., Kulmala, K., Keskinen, J., and Ronkko, T. (2015). Effects of Fresh Lubricant Oils on Particle Emissions Emitted by a Modern Gasoline Direct Injection Passenger Car. Environ. Sci. Technol., 49:3644–3652.
  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W., and Donaldson, K. (2008). Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study. Nature Nanotech., 3:423–428.
  • Quiros, D. C., Hu, S., Hu, S., Lee, E. S., Sardar, S., Wang, X., Olfert, J. S., Jung, H. S., Zhu, Y., and Huai, T. (2015). Particle Effective Density and Mass During Steady-State Operation of GDI, PFI, and Diesel Passenger Cars. J. Aerosol Sci., 83:39–54.
  • Ristovski, Z. D., Jayaratne, E. R., Morawska, L., Ayoko, G. A., and Lim, M. (2005). Particle and Carbon Dioxide Emissions from Passenger Vehicles Operating on Unleaded Petrol and LPG Fuel. Sci. Total Environ., 345:93–98.
  • Ronkko, T., Virtanen, A., Kannosto, J., Keskinen, J., Lappi, M., and Pirjola, L. (2007). Nucleation Mode Particles with a Nonvolatile Core in the Exhaust of a Heavy Duty Diesel Vehicle. Environ. Sci. Technol., 41:6384–6389.
  • Sager, T. M., and Castranova, V. (2009). Surface Area of Particle Administered Versus Mass in Determining the Pulmonary Toxicity of Ultrafine and Fine Carbon Black: Comparison to Ultrafine Titanium Dioxide. Part. Fibre Toxicol., 6:15.
  • Sakurai, H., Park, K., McMurry, P. H., Zarling, D. D., Kittelson, D. B., and Ziemann, P. J. (2003). Size-Dependent Mixing Characteristics of Volatile and Nonvolatile Components in Diesel Exhaust Aerosols. Environ. Sci. Technol., 37:5482–5495.
  • Schmid, O., Karg, E., Hagen, D. E., Whitefield, P. D., and Ferron, G. A. (2007). On the Effective Density of Non-Spherical Particles as Derived from Combined Measurements of Aerodynamic and Mobility Equivalent Size. J. Aerosol. Sci., 38:431–443.
  • Seong, H., Choi, S., and Lee, K. (2014). Examination of Nanoparticles From Gasoline Direct-Injection (GDI) Engines using Transmission Electron Microscopy (TEM). Int. J. Auto. Tech-.Kor. 15:175–181.
  • Seong, H., Lee, K., and Choi, S. (2013). Effects of Engine Operating Parameters on Morphology of Particulates from a Gasoline Direct Injection (GDI) Engine. SAE Int.
  • Sgro, L. A., Sementa, P., Vaglieco, B. M., Rusciano, G., D'Anna, A., and Minutolo, P. (2012). Investigating the Origin of Nuclei Particles in GDI Engine Exhausts. Combust. Flame, 159:1687–1692.
  • Sorensen, C. M. (2011). The Mobility of Fractal Aggregates: A Review. Aerosol Sci. Technol., 45:765–779.
  • Stanton, M. F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E., and Smith, A. (1981). Relation of Particle Dimension to Carcinogenicity in Amphibole Asbestoses and Other Fibrous Minerals. J. Natl. Cancer Inst., 67:965–975.
  • Virtanen, A., Ristimäki, J., Marjamäki, M., Vaaraslahti, K., Keskinen, J., and Lappi, M. (2002). Effective Density of Diesel Exhaust Particles as a Function of Size. SAE Int. 2002-01-0056.
  • Virtanen, A. K., Ristimaki, J. M., Vaaraslahti, K. M., and Keskinen, J. (2004). Effect of Engine Load on Diesel Soot Particles. Environ. Sci. Technol., 38:2551–2556.
  • Wittmaack, K. (2007). In Search of the Most Relevant Parameter for Quantifying Lung Inflammatory Response to Nanoparticle Exposure: Particle Number, Surface Area, or What? Environ. Health Perspect., 115:187–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.