1,684
Views
7
CrossRef citations to date
0
Altmetric
Articles

Comparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark discharge

, , , , , & show all

References

  • Akishev, Y. S., Aponin, G., Balakirev, A., Grushin, M., Karalnik, V., Petryakov, A., et al. (2011). Role of the Volume and Surface Breakdown in a Formation of Microdischarges in a Steady-State DBD. Eur. Phys. J. D, 61:421–429.
  • Barni, R., Biganzoli, I., Tassetti, D., Riccardi, C. (2014). Characterization of a Plasma Jet Produced by Spark Discharges in Argon Air Mixtures at Atmospheric Pressure. Plasma Chem. Plasma Process., 34:1415–1431.
  • Bau, S., Witschger, O., Gensdarmes, F., Thomas, D., Borra, J. P.. (2010). Electrical Properties of Airborne Nanoparticles Produced by a Commercial Spark-Discharge Generator. J. Nanoparticle Res., 12:1989–1995.
  • Borra, J. P.. (2006). Nucleation and Aerosol Processing in Atmospheric Pressure Electrical Discharges: Powders Production, Coatings and Filtration. J. Phys. D—Appl Phys., 39:R19–R54.
  • Borra, J. P. (2008). Charging of Aerosol and Nucleation in Atmospheric Pressure Electrical Discharges. Plasma Phys. Control. Fusion, 50:124036–45.
  • Borra, J. P., Goldman, A., Goldman, M., Boulaud, D. (1998). Electrical Discharge Regimes and Aerosol Production in Point-to-Plane Dc High-Pressure Cold Plasmas: Aerosol Production by Electrical Discharges. J. Aerosol Sci., 29:661–674.
  • Borra, J. P., Jidenko, N., Dutouquet, C., Aguerre, O., Hou, J., Weber, A. (2011). Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments. Eur. Phys. J.—Appl. Phys., 56:24019–25.
  • Borra, J. P., Jidenko, N., Hou, J., Weber, A. (2015). Vaporization of Bulk Metals into Single-Digit Nanoparticles by Non-Thermal Plasma Filaments in Atmospheric Pressure Dielectric Barrier Discharges. J. Aerosol Sci., 79:109–125.
  • Butler, K. M., Mulholland, G. W. (2004). Generation and Transport of Smoke Components. Fire Technol., 40:149–176.
  • Chae, S., Lee, D., Kim, M. C., Kim, D. S., Choi, M. (2015). Wire-in-Hole-Type Spark Discharge Generator for Long-Time Consistent Generation of Unagglomerated Nanoparticles. Aerosol Sci. Technol., 49:463–471.
  • Dhumal, S. Y., Daulton, T. L., Jiang, J., Khomami, B., Biswas, P. (2009). Synthesis of Visible Light-Active Nanostructured TiOx (x < 2) Photocatalysts in a Flame Aerosol Reactor. Appl. Catalysis B—Environ., 86:145–151.
  • Dramane, B., Zouzou, N., Moreau, E., Touchard, G. (2009). Electrostatic Precipitation of Submicron Particles using a DBD in Axisymmetric and Planar Configurations. IEEE Trans. Dielectr Electr. Insul., 16:343–351.
  • Evans, D. E., Harrison, R. M., Ayres, J. G. (2003). The Generation and Characterization of Metallic and Mixed Element Aerosols for Human Challenge Studies. Aerosol Sci. Technol., 37:975–987.
  • Feng, J. C., Huang, L. Y., Ludvigsson, L., Messing, M. E., Maisser, A., Biskos, G., et al. (2016). General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source. J. Phys. Chem. C, 120:621–630.
  • Golubovskii, Y. B., Maiorov, V. A., Behnke, J., Behnke, J. F. (2002). Influence of Interaction Between Charged Particles and Dielectric Surface Over a Homogeneous Barrier Discharge in Nitrogen. J. Phys. D—Appl. Phys., 35:751–761.
  • Jaworek, A. (2007). Micro- and Nanoparticle Production by Electrospraying. Powder Technol., 176:18–35.
  • Jiang, J., Chen, D. R., Biswas, P. (2007). Synthesis of Nanoparticles in a Flame Aerosol Reactor with Independent and Strict Control of Their Size, Crystal Phase and Morphology. Nanotechnology, 18:285603–10.
  • Jidenko, N., Borra, J. P. (2005). Kinematics of Charged Nanometric Particles in Silent Discharges. J. Phys. D—Appl. Phys., 38:617–620.
  • Jidenko, N., Bourgeois, E., Borra, J. P. (2010). Temperature Profiles in Filamentary Dielectric Barrier Discharges at Atmospheric Pressure. J. Phys. D—Appl. Phys., 43:295203–11.
  • Kim, D. B., Jung, H., Gweon, B., Moon, S. Y., Rhee, J. K., Choe, W. (2011). The Driving Frequency Effects on the Atmospheric Pressure Corona Jet Plasmas from Low Frequency to Radio Frequency. Phys. Plasmas, 18:043503–07.
  • Kunhardt, E. E. (2000). Generation of Large-Volume, Atmospheric-Pressure, Nonequilibrium Plasmas. IEEE Trans. Plasma Sci., 28:189–200.
  • Laegreid, N., Wehner, G. K. (1961). Sputtering Yields of Metals for Ar+ And Ne+ Ions with Energies From 50 To 600 Ev. J. Appl. Phys., 32:365–369.
  • Li, Q., Jiang, J. K., Duan, L., Deng, J. G., Jiang, L., Li, Z., et al. (2015). Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments. Aerosol Air Qual. Res., 15:1506–1513.
  • Li, Q., Pu, Y. K., Lieberman, M. A., Economou, D. J. (2011). Dynamic Model of Streamer Coupling for the Homogeneity of Glow like di Electric Barrier Discharges at Near-Atmospheric Pressure. Phys. Rev. E, 83:046405–11.
  • Li, Q., Takana, H., Pu, Y. K., Nishiyama, H. (2012). A Nonequilibrium Argon-Oxygen Planar Plasma Jet Using a Half-Confined Dielectric Barrier Duct in Ambient Air. Appl. Phys. Lett., 100:133501–04.
  • Maiorov, V. A., Golubovskii, Y. B. (2007). Modelling of Atmospheric Pressure Dielectric Barrier Discharges with Emphasis on Stability Issues. Plasma Sources Sci. Technol., 16:S67–S75.
  • Maisser, A., Barmpounis, K., Attoui, M. B., Biskos, G., Schmidt-Ott, A. (2015). Atomic Cluster Generation with an Atmospheric Pressure Spark Discharge Generator. Aerosol Sci. Technol., 49:886–894.
  • Mäkelä, J. M., Aalto, P., Gorbunov, B. Z., Korhonen, P. (1992). Size Distributions from Aerosol Spark Generator. J. Aerosol Sci., 23:233–236.
  • Motret, O., Hibert, C., Pellerin, S., Pouvesle, J. M. (2000). Rotational Temperature Measurements in Atmospheric Pulsed Dielectric Barrier Discharge—Gas Temperature and Molecular Fraction Effects. J. Phys. D—Appl. Phys., 33:1493–1498.
  • Navrátil, Z., Brandenburg, R., Trunec, D., Brablec, A., St'ahel, P., Wagner, H. E., Kopecký, Z. (2005). Comparative Study of Diffuse Barrier Discharges in Neon and Helium. Plasma Sources Sci., 15:8–17.
  • Okuyama, K., Kousaka, Y., Tohge, N., Yamamoto, S., Wu, J. J., Flagan, R. C., et al. (1986). Production of Ultrafine Metal-Oxide Aerosol-Particles by Thermal-Decomposition Of Metal Alkoxide Vapors. Aiche J., 32:2010–2019.
  • Park, K. T., Farid, M. M., Hwang, J. (2014). Anti-Agglomeration of Spark Discharge-Generated Aerosols Via Unipolar Air Ions. J. Aerosol Sci., 67:144–156.
  • Peineke, C., Schmidt-Ott, A. (2008). Explanation of Charged Nanoparticle Production from Hot Surfaces. J. Aerosol Sci., 39:244–252.
  • Pfeiffer, T. V., Feng, J., Schmidt-Ott, A. (2014). New Developments in Spark Production of Nanoparticles. Adv. Powder Technol., 25:56–70.
  • Rajasekaran, P., Mertmann, P., Bibinov, N., Wandke, D., Viol, W., Awakowicz, P. (2010). Filamentary and Homogeneous Modes of Dielectric Barrier Discharge (DBD) in Air: Investigation through Plasma Characterization and Simulation of Surface Irradiation. Plasma Process. Polym., 7:665–675.
  • Rao, N., Girshick, S., Heberlein, J., Mcmurry, P., Jones, S., Hansen, D., et al. (1995). Nanoparticle Formation Using a Plasma Expansion Process. Plasma Chem. Plasma Process., 15:581–606.
  • Reinmann, R., Akram, M. (1997). Temporal Investigation of a Fast Spark Discharge in Chemically Inert Gases. J. Phys. D—Appl. Phys., 30:1125–1134.
  • Schmidtott, A., Schurtenberger, P., Siegmann, H. C. (1980). Enormous Yield Of Photoelectrons From Small Particles. Phys. Rev. Lett., 45:1284–1287.
  • Schwyn, S., Garwin, E., Schmidtott, A. (1988). Aerosol Generation by Spark Discharge. J. Aerosol Sci., 19:639–642.
  • Tabrizi, N. S., Ullmann, M., Vons, V. A., Lafont, U., Schmidt-Ott A. (2009). Generation of Nanoparticles by Spark Discharge. J. Nanoparticle Res., 11:315–332.
  • Uehara, S., Itoga, T., Nishiyama, H. (2015). Discharge and Flow Characteristics Using Magnetic Fluid Spikes for Air Pollution Control. J. Phys. D—Appl. Phys., 48:282001–05.
  • Vons, V., Creyghton, Y., Schmidt-Ott, A. (2006). Nanoparticle Production Using Atmospheric Pressure Cold Plasma. J. Nanoparticle Res., 8:721–728.
  • Wen, S. B., Mao, X. L., Greif, R., Russo, R. E. (2007). Experimental and Theoretical Studies of Particle Generation after Laser Ablation of Copper with a Background Gas at Atmospheric Pressure. J. Appl. Phys., 101:123105–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.