1,785
Views
10
CrossRef citations to date
0
Altmetric
Articles

Simulating aerosol chamber experiments with the particle-resolved aerosol model PartMC

, , , , &
Pages 856-867 | Received 29 Sep 2016, Accepted 09 Mar 2017, Published online: 12 Apr 2017

References

  • Artelt, C., Schmid, H.-J., and Peukert, W. (2003). On the Relevance of Accounting for the Evolution of the Fractal Dimension in Aerosol Process Simulations. J. Aerosol Sci., 34(5):511–534.
  • ASME., (2006). Guide for Verification and Validation in Computational Solid Mechanics (ASME V&V 10-2006). American Society of Mechanical Engineers, New York. Reaffirmed 2016.
  • Berner, A., Lürzer, C., Pohl, F., Preining, O., and Wagner, P. (1979). The Size Distribution of the Urban Aerosol in Vienna. Sci. Total. Environ., 13(3):245–261.
  • Bunz, H., and Dlugi, R. (1991). Numerical Studies on the Behavior of Aerosols in Smog Chambers. J. Aerosol Sci., 22(4):441–465.
  • Chen, H., Iskander, M., and Penner, J. (1990). Light Scattering and Absorption by Fractal Agglomerates and Coagulations of Smoke Aerosols. J. Mod. Optic., 37(2):171–181. DOI:10.1080/09500349014550251.
  • Ching, J., Riemer, N., and West, M. (2012). Impacts of Black Carbon Mixing State on Black Carbon Nucleation Scavenging: Insights from a Particle-Resolved Model. J. Geophys. Res.-Atmos., 117(D23). DOI:10.1029/2012JD018269.
  • Ching, J., Riemer, N., and West, M. (2016). Black Carbon Mixing State Impacts on Cloud Microphysical Properties: Effects of Aerosol Plume and Environmental Conditions. J. Geophys. Res., 121:5990–6013.
  • Crump, J., and Seinfeld, J. (1981). Turbulent Deposition and Gravitational Sedimentation of an Aerosol in a Vessel of Arbitrary Shape. J. Aerosol Sci., 12(5):405–415.
  • DeVille, R., Riemer, N., and West, M. (2011). Weighted Flow Algorithms (WFA) for Stochastic Particle Coagulation. J. Geophys. Res., 230(23):8427–8451. DOI:10.1016/j.jcp.2011.07.027.
  • Eggersdorfer, M. L., and Pratsinis, S. E. (2014). Agglomerates and Aggregates of Nanoparticles Made in the Gas Phase. Adv. Powder Technol., 25(1):71–90. DOI:10.1016/j.apt.2013.10.010.
  • Eibeck, A., and Wagner, W. (2001). Stochastic Particle Approximations for Smoluchoski’s Coagulation Equation. Ann. Appl. Probab., 11(4):1137–1165.
  • Fierce, L., Riemer, N., and Bond, T. C. (2015). Explaining Variance in Black Carbon’s Aging Timescale. Atmos. Chem. Phys., 15:3173–3191. DOI:10.5194/acp-15-3173-2015.
  • Friedlander, S., and Wang, C. (1966). Self-Preserving Particle Size Distribution for Coagulation by Brownian Motion. J. Colloid Interface Sci., 22(2):126–132. DOI:10.1016/0021-9797(66)90073-7.
  • Friedlander, S. K. (2000). Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press, New York; Oxford.
  • Fuchs, N. A. (1964). Mechanics of Aerosols. Pergamon, New York.
  • Gillespie, D. T. (1975). An Exact Method for Numerically Simulating Stochastic Coalescence Process in a Cloud. J. Atmos. Sci., 32(10):1977–1989.
  • Gillespie, D. T., Roh, M., and Petzold, L. R. (2009). Refining the Weighted Stochastic Simulation Algorithm. J. Chem. Phys., 130(17):174103. DOI:10.1063/1.3116791.
  • Jokulsdottir, T., and Archer, D. (2016). A Stochastic, Lagrangian Model of Sinking Biogenic Aggregates in the Ocean (SLAMS 1.0): Model Formulation, Validation and Sensitivity. Geosci. Model Dev., 9(4):1455–1476.
  • Kaiser, J. C., Riemer, N., and Knopf, D. A. (2011). Detailed Heterogeneous Oxidation of Soot Surfaces in a Particle-Resolved Aerosol Model. Atmos. Chem. Phys., 11(9):4505–4520. DOI:10.5194/acp-11-4505-2011.
  • Koch, W., and Friedlander, S. (1990). The Effect of Particle Coalescence on the Surface Area of a Coagulating Aerosol. J. Colloid Interf. Sci., 140(2):419–427. DOI:10.1016/0021-9797(90)90362-R.
  • Kolb, C. E., and Worsnop, D. R. (2012). Chemistry and Composition of Atmospheric Aerosol Particles. Annu. Rev. Phys. Chem., 63(1):471–491. DOI:10.1146/annurev-physchem-032511-143706.
  • Kostoglou, M., and Konstandopoulos, A. G. (2001). Evolution of Aggregate Size and Fractal Dimension During Brownian Coagulation. J. Aerosol Sci., 32(12):1399–1420.
  • Lapuerta, M., Ballesteros, R., and Martos, F. J. (2006). A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates. J. Colloid Interf. Sci., 303(1):149–158.
  • Liffman, K. (1992). A Direct Simulation Monte-Carlo Method for Cluster Coagulation. J. Comput. Phys., 100:116–127.
  • Matsunaga, A., and Ziemann, P. J. (2010). Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements. Aerosol Sci. Technol., 44(10):881–892.
  • McMurry, P., and Rader, D. (1985). Aerosol Wall Losses in Electrically Charged Chambers. Aerosol Sci. Technol., 4(3):249–268.
  • Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., and Focsa, C. (2009). Characterisation of Particulate Matter and Gaseous Emissions From a Large Ship Diesel Engine. Atmos. Environ., 43:2632–2641.
  • Moore, R. H., Nenes, A., and Medina, J. (2010). Scanning Mobility CCN Analysis - A Method for Fast Measurements of Size-Resolved CCN Distributions and Activation Kinetics. Aerosol Sci. Technol., 44(10):861–871. DOI:10.1080/02786826.2010.498715.
  • Naumann, K. (2003). COSIMA—A Computer Program Simulating the Dynamics of Fractal Aerosols. J. Aerosol Sci., 34(10):1371–1397.
  • Okuyama, K., Kousaka, Y., Yamamoto, S., and Hosokawa, T. (1986). Particle Loss of Aerosols With Particle Diameters Between 6 and 2000 nm in Stirred Tank. J. Colloid Interf. Sci., 110(1):214–223.
  • Okuzumi, S., Tanaka, H., and Sakagami, M. (2009). Numerical Modeling of the Coagulation and Porosity Evolution of Dust Aggregates. The Astrophys. J., 707(2):1247–1263.
  • Ormel, C. W., and Spaans, M. (2008). Monte Carlo Simulation of Particle Interactions at High Dynamic Range: Advancing Beyond the Googol. Astrophys. J., 684(2):1291–1309. DOI:10.1086/590052.
  • Park, S., Kim, H., Han, Y., Kwon, S., and Lee, K. (2001). Wall Loss Rate of Polydispersed Aerosols. Aerosol Sci. Technol., 35(3):710–717.
  • Pierce, J. R., Engelhart, G. J., Hildebrandt, L., Weitkamp, E. A., Pathak, R. K., Donahue, N. M., Robinson, A. L., Adams, P. J., and Pandis, S. N. (2008). Constraining Particle Evolution From Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements. Aerosol Sci. Technol., 42(12):1001–1015.
  • Pöschl, U. (2005). Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed., 44(46):7520–7540. DOI:10.1002/anie.200501122.
  • Pranami, G., Lamm, M. H., and Vigil, R. D. (2010). Molecular Dynamics Simulation of Fractal Aggregate Diffusion. Phys. Rev. E, 82, 051402.
  • Riemer, N., West, M., Zaveri, R., and Easter, R. (2010). Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model. J. Aerosol Sci., 41(1, SI):143–158. DOI:10.1016/j.jaerosci.2009.08.009.
  • Riemer, N., West, M., Zaveri, R. A., and Easter, R. C. (2009). Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model. J. Geophy. Res., 114:D09202. DOI:10.1029/2008JD011073.
  • Roh, M. K., Daigle, B. J., Gillespie, D. T., and Petzold, L. R. (2011). State-Dependent Doubly Weighted Stochastic Simulation Algorithm for Automatic Characterization of Stochastic Biochemical Rare Events. J. Chem. Phys., 135(23):234108. DOI:10.1063/1.3668100.
  • Seinfeld, J. H., and Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. J. Wiley, New York.
  • Shekar, S., Sander, M., Riehl, R. C., Smith, A. J., Braumann, A., and Kraft, M. (2012). Modelling the Flame Synthesis of Silica Nanoparticles from Tetraethoxysilane. Chem. Eng. Sci., 70(0):54–66. DOI:10.1016/j.ces.2011.06.010.
  • Shima, S., Kusano, K., Kawano, A., Sugiyama, T., and Kawahara, S. (2009). The Super-Droplet Method for the Numerical Simulation of Clouds and Precipitation: A Particle-Based and Probabilistic Microphysics Model Coupled With a Non-Hydrostatic Model. Q. J. R. Meteorol. Soc., 135(642, A):1307–1320.
  • Sorensen, C. (2001). Light Scattering by Fractal Aggregates: A Review. Aerosol Sci. Technol., 35(2):648–687.
  • Sorensen, C. M. (2011). The Mobility of Fractal Aggregates: A Review. Aerosol Sci. Technol., 45:765–779.
  • Tian, J., Riemer, N., West, M., Pfaffenberger, L., Schlager, H., and Petzold, A. (2014). Modeling the Evolution of Aerosol Particles in a Ship Plume Using PartMC-MOSAIC. Atmos. Chem. Phys., 14(11):5327–5347. DOI:10.5194/acp-14-5327-2014.
  • Ulrich, G. D., and Subramanian, N. S. (1977). III. Coalescence as a Rate-Controlling Process. Combust. Sci. Technol., 17(3–4):119–126. DOI:10.1080/00102207708946822.
  • van de Vate, J. F., and ten Brink, H. M. (1980). The Boundary Layer for Diffusive Aerosol Deposition Onto Walls, in Proceedings of the CSNI Specialists Meeting on Nuclear Aerosols in Reactor Safety. Gaitlinburg, U.S.A., pp. 162–170.
  • Vemury, S., and Pratsinis, S. (1995). Self-Preserving Size Distributions of Agglomerates. J. Aerosol Sci., 26(2):175–185. DOI:10.1016/0021-8502(94)00103-6.
  • Verheggen, B., and Mozurkewich, M. (2006). An Inverse Modeling Procedure to Determine Particle Growth and Nucleation Rates From Measured Aerosol Size Distributions. Atmos. Chem. Phys., 6:2927–2942.
  • Wells, C., Morgan, N., Kraft, M., and Wagner, W. (2006). A New Method for Calculating the Diameters of Partially-Sintered Nanoparticles and Its Effect on Simulated Particle Properties. Chem. Eng. Sci., 61(1):158–166. DOI:10.1016/j.ces.2005.01.048.
  • Wentzel, M., Gorzawski, H., Naumann, K., Saathoff, H., and Weinbruch, S. (2003). Transmission Electron Microscopical and Aerosol Dynamical Characterization of Soot Aerosols. J. Aerosol Sci., 34(10):1347–1370.
  • Wu, M., and Friedlander, S. (1993). Enhanced Power Law Agglomerate Growth in the Free Molecule Regime. J. Aerosol Sci., 24(3):273–282. DOI:10.1016/0021-8502(93)90002-Q.
  • Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N., and West, M. (2010). Particle-Resolved Simulation of Aerosol Size, Composition, Mixing State, and the Associated Optical and Cloud Condensation Nuclei Activation Properties in an Evolving Urban Plume. J. Geophys. Res., 115:D17210. DOI:10.1029/2009JD013616.
  • Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K. (2008). Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res., 113(D13). DOI:10.1029/2007JD008782.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.