560
Views
7
CrossRef citations to date
0
Altmetric
Articles

A contribution to the amaranthine quarrel between true and average electrical mobility in the free molecular regime

ORCID Icon, &
Pages 887-895 | Received 06 Nov 2016, Accepted 29 Mar 2017, Published online: 04 May 2017

References

  • Alexander, A. L., Lee, J. E., Lazar, M., and Field, A. S. (2007). Diffusion Tensor Imaging of the Brain. Neurotherapeutics, 4(3):316–329.
  • Basser, P. J., Mattiello, J., and LeBihan, D. (1994). MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J., 66(1):259–267. doi: 10.1016/S0006-3495(94)80775-1
  • Basser, P. J., and Pierpaoli, C. (2011). Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. (1996). J. Magn. Reson., 213(2):560–570. doi: 10.1016/j.jmr.2011.09.022
  • Bird, G. A. (1994). Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press; Oxford University Press, Oxford, New York.
  • Bohrer, B. C., Mererbloom, S. I., Koeniger, S. L., Hilderbrand, A. E., and Clemmer, D. E. (2008). Biomolecule Analysis by Ion Mobility Spectrometry. Ann. Rev. Anal. Chem., 1:293–327.
  • Chan, P., and Dahneke, B. (1981). Free‐Molecule Drag on Straight Chains of Uniform Spheres. J. Appl. Phys., 52(5):3106–3110. doi: doi:http://dx.doi.org/10.1063/1.329173
  • Dahneke, B. E. (1973a). Slip Correction Factors for Nonspherical Bodies—I Introduction and Continuum Flow. J. Aerosol Sci., 4(2):139–145. doi: http://dx.doi.org/10.1016/0021-8502(73)90065-7
  • Dahneke, B. E. (1973b). Slip Correction Factors for Nonspherical Bodies—II Free Molecule Flow. J. Aerosol Sci., 4(2):147–161. doi: http://dx.doi.org/10.1016/0021-8502(73)90066-9
  • de la Mora, J. F. (2002). Free-Molecule Mobility of Polyhedra and Other Convex Hard-Bodies. J. Aerosol Sci., 33(3):477–489.
  • de la Mora, J. F., de Juan, L., Eichler, T., and Rosell, J. (1998). Differential Mobility Analysis of Molecular Ions and Nanometer Particles. Trac-Trends Anal. Chem., 17(6):328–339.
  • Epstein, P. S. (1924). On the Resistance Experienced by Spheres in their Motion through Gases. Phys. Rev., 23:710. doi: http://dx.doi.org/10.1103/PhysRev.23.710
  • Garciaybarra, P., and Rosner, D. E. (1989). Thermophoretic Properties of Nonspherical Particles and Large Molecules. AICHE J., 35(1):139–147.
  • Garcia-Ybarra, P. L., Castillo, J. L., and Rosner, D. E. (2006). Drag on a Large Spherical Aggregate with Self-Similar Structure: An Asymptotic Analysis. J. Aerosol Sci., 37(3):413–428.
  • Happel, J., and Brenner, H. (1981). Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Springer Netherlands, Dordrecht.
  • Hogan, C. J., and de la Mora, J. F. (2011). Ion Mobility Measurements of Nondenatured 12–150 kDa Proteins and Protein Multimers by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS). J. Am. Soc. Mass Spectrom., 22(1):158–172.
  • Jiang, J. K., Zhao, J., Chen, M. D., Eisele, F. L., Scheckman, J., Williams, B. J., Kuang, C., and McMurry, P. H. (2011). First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events. Aerosol Sci. Technol., 45(4):Ii–V.
  • Landau, L. D., and Lifshitz, E. M. (1987). Fluid Mechanics. 2nd ed. Pergamon Press, Oxford, England; New York, pp. 227–237.
  • Larriba-Andaluz, C., Fernandez-Garcia, J., Ewing, M. A., Hogan, C. J., and Clemmer, D. E. (2015). Gas Molecule Scattering and Ion Mobility Measurements for Organic Macro-Ions in He Versus N-2 Environments. Phys. Chem. Chem. Phys., 17(22):15019–15029.
  • Larriba-Andaluz, C., and Hogan, C. (2013). Novel Interfaced Approach to Mobility Calculations with Diffuse Scattering and Maxwell Rotational Distributions for Diatomic Gases in the Free Molecular Regime. Abstr. Papers Am. Chem. Soc., 246.
  • Larriba-Andaluz, C., and Hogan, C. J. (2014). Collision Cross Section Calculations for Polyatomic Ions Considering Rotating Diatomic/Linear Gas Molecules. J. Chem. Phys., 141(19), 194107. doi: 10.1063/1.4901890
  • Larriba, C., and de la Mora, J. F. (2012). The Gas Phase Structure of Coulombically Stretched Polyethylene Glycol Ions. J. Phys. Chem. B, 116(1):593–598.
  • Larriba, C., de la Mora, J. F., and Clemmer, D. E. (2014). Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry. J. Am. Soc. Mass Spectrom., 25(8):1332–1345.
  • Larriba, C., and Hogan, C. J. (2013a). Free Molecular Collision Cross Section Calculation Methods for Nanoparticles and Complex Ions with Energy Accommodation. J. Comput. Phys., 251:344–363.
  • Larriba, C., and Hogan, C. J. (2013b). Ion Mobilities in Diatomic Gases: Measurement versus Prediction with Non-Specular Scattering Models. J. Phys. Chem. A, 117(19):3887–3901.
  • Larriba, C., Hogan, C. J., Attoui, M., Borrajo, R., Garcia, J. F., and de la Mora, J. F. (2011). The Mobility-Volume Relationship below 3.0 nm Examined by Tandem Mobility-Mass Measurement. Aerosol Sci. Technol., 45(4):453–467.
  • Li, M. D., Mulholland, G. W., and Zachariah, M. R. (2014a). Rotational Diffusion Coefficient (or Rotational Mobility) of a Nanorod in the Free-Molecular Regime. Aerosol Sci. Technol., 48(2):139–141.
  • Li, M. D., Mulholland, G. W., and Zachariah, M. R. (2014b). Understanding the Mobility of Nonspherical Particles in the Free Molecular Regime. Phys. Rev. E, 89(2), 022112.
  • Li, Z. G., and Wang, H. (2003a). Drag Force, Diffusion Coefficient, and Electric Mobility of Small Particles. I. Theory Applicable to the Free-Molecule Regime. Phys. Rev. E, 68(6), 061206.
  • Li, Z. G., and Wang, H. (2003b). Drag Force, Diffusion Coefficient, and Electric Mobility of Small Particles. II. Application. Phys. Rev. E, 68(6), 061207.
  • Mackowski, D. W. (1994). Calculation of Total Cross-Sections of Multiple-Sphere Clusters. J. Opt. Soc. Am. A-Opt. Image Sci. Vision, 11(11):2851–2861.
  • Mackowski, D. W. (2006). Monte Carlo Simulation of Hydrodynamic Drag and Thermophoresis of Fractal Aggregates of Spheres in the Free-Molecule Flow Regime. J. Aerosol Sci., 37(3):242–259.
  • Mason, E. A., and McDaniel, E. W. (1988). Transport Properties of Ions in Gases. John Wiley & Sons, New York.
  • Mesleh, M. F., Hunter, J. M., Shvartsburg, A. A., Schatz, G. C., and Jarrold, M. F. (1997). Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential (Vol 100, pg 16082, 1996). J. Phys. Chem. A, 101(5):968–968.
  • Oberreit, D., Rawat, V. K., Larriba-Andaluz, C., Ouyang, H., McMurry, P. H., and Hogan, C. J. (2015). Analysis of Heterogeneous Water Vapor Uptake by Metal Iodide Cluster Ions Via Differential Mobility Analysis-Mass Spectrometry. J. Chem. Phys., 143(10), 104204.
  • Ouyang, H., Larriba-Andaluz, C., Oberreit, D. R., and Hogan, C. J. (2013). The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry. J. Am. Soc. Mass Spectrom., 24(12):1833–1847.
  • Pease, L. F., Tsai, D. H., Zangmeister, R. A., Zachariah, M. R., and Tarlov, M. J. (2009). Use of Electrospray-Differential Mobility Analysis to Characterize Biologically Conjugated Nanoparticles. Abstr. Papers Am. Chem. Soc., 237.
  • Ruotolo, B. T., Benesch, J. L. P., Sandercock, A. M., Hyung, S. J., and Robinson, C. V. (2008). Ion mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nature Protocols, 3(7):1139–1152.
  • Shvartsburg, A. A., Hudgins, R. R., Dugourd, P., and Jarrold, M. F. (1997). Structural Elucidation of Fullerene Dimers by High-Resolution Ion Mobility Measurements and Trajectory Calculation Simulations. J. Phys. Chem. A, 101(9):1684–1688.
  • Shvartsburg, A. A., and Jarrold, M. F. (1996). An Exact Hard-Spheres Scattering Model for the Mobilities of Polyatomic Ions. Chem. Phys. Lett., 261(1–2):86–91.
  • Tammet, H. (1995). Size and Mobility of Nanometer Particles, Clusters and Ions. J. Aerosol Sci., 26(3):459–475.
  • Tsai, D. H., Pease, L. F., Zangmeister, R. A., Tarlov, M. J., and Zachariah, M. R. (2009). Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir, 25(1):140–146.
  • Zhang, C. L., Thajudeen, T., Larriba, C., Schwartzentruber, T. E., and Hogan, C. J. (2012). Determination of the Scalar Friction Factor for Nonspherical Particles and Aggregates Across the Entire Knudsen Number Range by Direct Simulation Monte Carlo (DSMC). Aerosol Sci. Technol., 46(10):1065–1078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.