1,339
Views
13
CrossRef citations to date
0
Altmetric
Articles

Charge distribution uncertainty in differential mobility analysis of aerosols

, ORCID Icon, & ORCID Icon
Pages 1168-1189 | Received 13 May 2016, Accepted 28 May 2017, Published online: 28 Jun 2017

References

  • Brunelli, N. A., Flagan, R. C., and Giapis, K. P. (2009). Radial Differential Mobility Analyzer for One Nanometer Particle Classification. Aerosol Sci. Technol., 43(1):53–59. doi: 10.1080/02786820802464302.
  • Clarke, A. D., Varner, J. L., Eisele, F., Mauldin, R. L., Tanner, D., and Litchy, M. (1998). Particle Production in the Remote Marine Atmosphere: Cloud Outflow and Subsidence During ACE 1. J. Geophys. Res., 103:16397–16409.
  • Coggon, M. M., Sorooshian, A., Wang, Z., Craven, J. S., Metcalf, A. R., Lin, J. J., Nenes, A., Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H. (2014). Observations of Continental Biogenic Impacts on Marine Aerosol and Clouds Off the Coast of California. J. Geophys. Res., 119:6724–6748. doi: 10.1002/2013JD021228.
  • Davies, C. N. (1945). Definitive Equations for the Fluid Resistance of Spheres. P. Phys. Soc., 57:259–270.
  • de La Verpilliere, J. L., Swanson, J. J., and Boies, A. M. (2015). Unsteady Bipolar Diffusion Charging in Aerosol Neutralisers: A Non-Dimensional Approach to Predict Charge Distribution Equilibrium Behaviour. J. Aerosol Sci., 86:55–68.
  • Ehn, M., Junninen, H., Petäjä, T., Kurtén, T., Kerminen, V.-M., Schobesberger, S., Manninen, H. E., Ortega, I. K., Vehkamäki, H., Kulmala, M., and Worsnop, D. R. (2010). Composition and Temporal Behavior of Ambient Ions in the Boreal Forest. Atmos. Chem. Phys., 10:8513–8530. doi: 10.5194/acp-10-8513-2010.
  • Ehn, M., Junninen, H., Schobesberger, S., Manninen, H. E., Franchin, A., Sipilä, M., Petäjä, T., Kerminen, V.-M., Tammet, H., Mirme, A., Mirme, S., Hõrrak, U., Kulmala, M., and Worsnop, D. R. (2011). An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Sci. Technol., 45(4):522–532.
  • Filippov, A. V. (1993). Charging of Aerosol in the Transition Regime. J. Aerosol Sci., 42:423–436.
  • Flagan, R. C. (1999). On Differential Mobility Analyzer Resolution. Aerosol Sci. Technol., 30(6):556–570.
  • Fuchs, N. A. (1963). On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Environment. Geofis. Pura Appl., 56:185–192.
  • Gagné, S., Leppä, J., Petäjä, T., McGrath, M. J., Vana, M., Kerminen, V.-M., Laakso, L., and Kulmala, M. (2012). Aerosol Charging State at an Urban Site: New Analytical Approach and Implications for Ion-Induced Nucleation. Atmos. Chem. Phys., 12:4647–4666. doi: 10.5194/acp-12-4647-2012.
  • Gopalakrishnan, R., and Hogan, C. J. (2012). Coulomb-Influenced Collision in Aerosols and Dusty Plasmas. Phys. Rev. E, 85:026410.
  • Gopalakrishnan, R., McMurry, P. H., and Hogan, C. J. (2015). Bipolar Charging of Nanoparticles: A Review and Development of Approaches for Non-spherical Particles. Aerosol Sci. Technol., 49:1181–1194.
  • Gopalakrishnan, R., Meredith, M. J., Larriba-Andaluz, C., and Hogan, C. J. (2013a). Brownian Dynamics Determination of the Bipolar Steady State Charge Distribution on Spheres and Non-spheres in the Transition Regime. J. Aerosol Sci., 63:126–145.
  • Gopalakrishnan, R., Thajudeen, T., Ouyang, H., and Hogan, C. J. (2013b). The Unipolar Diffusion Charging of Arbitrary Shaped Aerosol Particles. J. Aerosol Sci., 64:60–80.
  • Hagwood, C., Sivathanu, Y., and Mulholland, G. (1999). The DMA Transfer Function with Brownian Motion, A Trajectory/Monte Carlo Approach. Aerosol Sci. Technol., 30:40–61.
  • Han, B., Hudda, N., Ning, Z., Kim, H.-J., Kim, Y.-J., and Sioutas, C. (2009). A Novel Bipolar Charger for Submicron Aerosol Particles using Carbon Fiber Ionizers. J. Aerosol Sci., 40(4):285–294.
  • He, M., and Dhaniyala, S. (2014). Experimental Characterization of Flowrate-Dependent Bipolar Diffusion Charging Efficiencies of Sub-50 nm Particles. J. Aerosol Sci., 76:175–187.
  • Hoppel, W. A., and Frick, G. M. (1986). Ion-Aerosol Attachment Coefficients and the Steady-State Charge Distribution on Aerosols in a Bipolar Ion Environment. Aerosol Sci. Technol., 5:1–21.
  • Hoppel, W. A., and Frick, G. M. (1990). The Nonequilibrium Character of the Aerosol Charge Distributions Produced by Neutralizes. Aerosol Sci. Technol., 12:471–496.
  • Hussin, A., Scheibel, H. G., Becker, K. H., and Porstendörfer, J. (1983). Bipolar Diffusion Charging of Aerosol Particles–1: Experimental Results within the Diameter Range 4–30 nm. J. Aerosol Sci., 14(5):671–677.
  • Hyvärinen, A.-P., Raatikainen, T., Komppula, M., Mielonen, T., Sundström, A.-M., Brus, D., Panwar, T. S., Hooda, R. K., Sharma, V. P., de Leeuw, G., and Lihavainen, H. (2011). Effect of the Summer Monsoon on Aerosols at two Measurement Stations in Northern India – Part 2: Physical and Optical Properties. Atmos. Chem. Phys., 11:8283–8294. doi: 10.5194/acp-11-8283-2011.
  • Iida, K., Stolzenburg, M. R., and McMurry, P. H. (2009). Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter. Aerosol Sci. Technol., 43:81–96. doi: 10.1080/02786820802488194.
  • Jiang, J., Hogan, C. J., Chen, D.-R., and Biswas, P. (2007). Aerosol Charging and Capture in the Nanoparticle Size Range (6–15 nm) by Direct Photoionization and Diffusion Mechanisms. J. Appl. Phys., 102:034904.
  • Jiang, J., Kim, C., Wang, X., Stolzenburg, M. R., Kaufman, S. L., Qi, C., Sem, G. J., Sakurai, H., Hama, N., and McMurry, P. H. (2014). Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate. Aerosol Sci. Technol., 48(12):1207–1216. doi: 10.1080/02786826.2014.976333.
  • Kallinger, P., and Szymanski, W. (2015). Experimental Determination of the Steady-State Charging Probabilities and Particle Size Conservation in Non-radioactive and Radioactive Bipolar Aerosol Chargers in the Size Range of 5–40 nm. J. Nanopart. Res., 17:171. doi: 10.1007/s11051-015-2981-x.
  • Knutson, E. O., and Whitby, K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory and Applications. J. Aerosol Sci., 6:443–451.
  • Ku, B. K., and de la Mora, J. F. (2009). Relation between Electrical Mobility, Mass, and Size for Nanodrops 1–6.5 nm in Diameter in Air. Aerosol Sci. Technol., 43(3):241–249. doi: 10.1080/02786820802590510.
  • Kulmala, M., and Kerminen, V.-M. (2008), On the Formation and Growth of Atmospheric Nanoparticles. Atmos. Res., 90:132–150.
  • Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H. (2004). Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations. J. Aerosol Sci., 35:143–176.
  • Kwon, S. B., Sakurai, H., Seto, T., and Kim, Y. J. (2006). Charge Neutralization of Submicron Aerosols using Surface-Discharge Microplasma. J. Aerosol Sci., 37:483–499.
  • Larriba, C., and Hogan, C. J. (2013). Ion Mobilities in Diatomic Gases: Measurement vs. Prediction with Non-Specular Scattering Models. J. Phys. Chem. A 117:3887–3901.
  • Larriba-Andaluz, C., Fernández-García, J., Ewing, M. A., Hogan, C. J., and Clemmer, D. E. (2015). Gas Molecule Scattering & Ion Mobility Measurements for Organic Macro-Ions in He Versus N2 Environments. Phys. Chem. Chem. Phys., 17:15019–15029.
  • Lee, H. M., Kim, C. S., Shimada, M., and Okuyama, K. (2005). Effects of Mobility Changes and Distribution of Bipolar Ions on Aerosol Nanoparticle Diffusion Charging. J. Chem. Eng. Jpn., 38:486–496.
  • Leppä, J., Kerminen, V.-M., Laakso, L., Korhonen, H., Lehtinen, K. E. J., Gagné, S., Manninen, H. E., Nieminen, T., and Kulmala, M. (2009). Ion-UHMA: A Model for Simulating the Dynamics of Neutral and Charged Aerosol Particles. Boreal Env. Res., 14:559–575.
  • López-Yglesias, X., and Flagan, R. (2013a). Ion-Aerosol Flux Coefficients and the Steady State Charge Distribution of Aerosols in a Bipolar Ion Environment. Aerosol Sci. Technol., 47(6):688–704.
  • López-Yglesias, X., and Flagan, R. (2013b). Population Balances of Micron-sized Aerosol in a Bipolar Ion Environment. Aerosol Sci. Technol., 47(6):681–687.
  • Maißer, A., Thomas, J. M., Larriba-Andaluz, C., He, S., and Hogan, C. J. (2015). The Mass-Mobility Distributions of Ions Produced by a Po-210 Source in Air. J. Aerosol Sci., 90:36–50.
  • Mäkelä, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth, S., Markkanen, T., Seitsonen, K., Lihavainen, H., and Kulmala, M. (1997). Observations of Ultrafine Aerosol Particle Formation and Growth in Boreal Forest. Geophys. Res. Lett., 24(10):1219–1222. doi: 10.1029/97GL00920.
  • Merritt, M., and Zhang, Y. (2005). Interior-Point Gradient Method for Large-Scale Totally Nonnegative Least Squares Problems. J. Optimiz. Theory App., 126(1):191–202. doi: 10.1007/s10957-005-2668-z.
  • Mirme, S., Mirme, A., Minikin, A., Petzold, A., Hõrrak, U., Kerminen, V.-M., and Kulmala, M. (2010). Atmospheric Sub-3 nm Particles at High Altitudes. Atmos. Chem. Phys., 10:437–451. doi: 10.5194/acp-10-437-2010.
  • Mönkkönen, P., Koponen, I. K., Lehtinen, K. E. J., Hämeri, K., Uma, R., and Kulmala, M. (2005). Measurements in a Highly Polluted Asian Mega City: Observations of Aerosol Number Size Distribution, Modal Parameters and Nucleation Events. Atmos. Chem. Phys., 5:57–66. doi: 10.5194/acp-5-57-2005.
  • Mui, W., Thomas, D. A., Downard, A. J., Beauchamp, J. L., Seinfeld, J. H., and Flagan, R. C. (2013). Ion Mobility-Mass Spectrometry with a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC). Anal. Chem., 85(13):6319–6326. doi: 10.1021/ac400580u.
  • Mui, W., Mai, H., Downard, A. J., Seinfeld, J. H., and Flagan, R. C. (2017). Design, Simulation, and Characterization of a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC). Aerosol Sci. Technol., 51(7):801–823. doi: 10.1080/02786826.2017.1315046.
  • Neitola, K., Asmi, E., Komppula, M., Hyvärinen, A.-P., Raatikainen, T., Panwar, T. S., Sharma, V. P., and Lihavainen, H. (2011). New Particle Formation Infrequently Observed in Himalayan Foothills – Why? Atmos. Chem. Phys., 11:8447–8458. doi: 10.5194/acp-11-8447-2011.
  • Ouyang, H., Gopalakrishnan, R., and Hogan, C. J. (2012). Nanoparticle Collisions in the Gas Phase in the Presence of Singular Contact Potentials. J. Chem. Phys., 137(6):064316.
  • Ouyang, H., Larriba-Andaluz, C., Oberreit, D. R., and Hogan, C. J. (2013). The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry. J. Am. Soc. Mass Spectrom., 24:1833–1847. doi: 10.1007/s13361-013-0724-8.
  • Qi, C., and Kulkarni, P. (2013). Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol. Aerosol Sci. Technol., 47(1):81–92. doi: 10.1080/02786826.2012.728301.
  • Rosser, S., and de la Mora, J. F. (2005). Vienna-Type DMA of High Resolution and High Flow Rate. Aerosol Sci. Technol., 39(12):1191–1200. doi: 10.1080/02786820500444820.
  • Shimada, M., Han, B., Okuyama, K., and Otani, Y. (2002). Bipolar Charging of Aerosol Nanoparticles by a Soft X-ray Photoionizer. J. Chem. Eng. Jpn., 35(8):786–793.
  • Steiner, G., Jokinen, T., Junninen, H., Sipilä, M., Petäjä, T., Worsnop, D. R., Reischl, G. P., and Kulmala, M. (2014). High-Resolution Mobility and Mass Spectrometry of Negative Ions Produced in a 241Am Aerosol Charger. Aerosol Sci. Technol., 48(3):261–270. doi: 10.1080/02786826.2013.870327.
  • Steiner, G., and Reischl, G. P. (2012). The Effect of Carrier Gas Contaminants on the Charging Probability of Aerosols under Bipolar Charging Conditions. J. Aerosol Sci., 54:21–31.
  • Stolzenburg, M. R. (1988). An Ultrafine Aerosol Size Distribution Measuring System. University of Minnesota, Minneapolis.
  • Tammet, H. (1995). Size and Mobility of Nanometer Particles, Clusters, and Ions. J. Aerosol Sci., 26:459–475.
  • Tigges, L., Jain, A., and Schmid, H.-J. (2015). On the Bipolar Charge Distribution used for Mobility Particle Sizing: Theoretical Considerations. J. Aerosol Sci., 88:119–134.
  • Weingartner, E., Nyeki, S., and Baltensperger, U. (1999). Seasonal and Diurnal Variation of Aerosol Size Distributions (10 < D < 750 nm) at a High-Alpine Site (Jungfraujoch 3580 m asl). J. Geophys. Res., 104(D21):26809–26820.
  • Wiedensohler, A. (1988). An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Size Range. J. Aerosol Sci., 19:387–389.
  • Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S. (2012). Mobility Particle Size Spectrometers: Harmonization of Technical Standards and Data Structure to Facilitate High Quality Long-Term Observations of Atmospheric Particle Number Size Distributions. Atmos. Meas. Tech., 5:657–685. doi: 10.5194/amt-5-657-2012.
  • Yun, K. M., Lee, S. Y., Iskandar, F., Okuyama, K., and Tajima, N. (2009). Effect of X-Ray Energy and Ionization Time on the Charging Performance and Nanoparticle Formation of a Soft X-Ray Photoionization Charger. Adv. Powder Technol., 20(6):529–536.
  • Zhang, S.-H., and Flagan, R. C. (1996). Resolution of the Radial Differential Mobility Analyzer for Ultrafine Particles. J. Aerosol Sci., 27:1179–1200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.