1,464
Views
22
CrossRef citations to date
0
Altmetric
Articles

Why would apparent κ linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols

Pages 1377-1388 | Received 21 Sep 2016, Accepted 24 Jun 2017, Published online: 24 Jul 2017

References

  • Abbatt, J. P. D., Broekhuizen, K., and Kumar, P. (2005). Cloud Condensation Nucleus Activity of Internally Mixed Ammonium Sulfate/Organic Acid Aerosol Particles. Atmos. Environ., 39:4767–4778.
  • Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L. (2007). Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry. Anal. Chem., 79:8350–8358.
  • Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K., Ulbrich, I., Mohr, C., Kimmenl, J. R., Sun, Y., Zhang, Q., Trimborn, A. M., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L. (2008). O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environ. Sci. Technol., 42:4487–4485.
  • Alfarra, M. R., Good, N., Wyche, K. P., Hamilton, J. F., Monks, P. S., Lewis, A. C., and McFiggans, G. (2013). Water Uptake is Independent of the Inferred Composition of Secondary Aerosols Derived from Multiple Biogenic VOCs. Atmos. Chem. Phys., 13:11769–11789.
  • Andreae, M. O., and Rosenfeld, D. (2008). Aerosol–Cloud–Precipitation Interactions. Part 1. The Nature and Sources of Cloud-Active Aerosols. Earth-Sci. Rev., 89:13–41.
  • Asa-Awuku, A., Sullivan, A. P., Hennigan, C. J., Weber, R. J., and Nenes, A. (2008). Investigation of Molar Volume and Surfactant Characteristics of Water-Soluble Organic Compounds in Biomass Burning Aerosol. Atmos. Chem. Phys., 8:799–812.
  • Cerully, K. M., Bougiatioti, A., Hite Jr, J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A. (2015). On the Link Between Hygroscopicity, Volatility, and Oxidation State of Ambient and Water-Soluble Aerosols in the Southeastern United States. Atmos. Chem. Phys., 15:8679–8694.
  • Chang, R. Y. W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J., Leaitch, W. R., and Abbatt, J. P. D. (2010). The Hygroscopicity Parameter (κ) of Ambient Organic Aerosol at a Field Site Subject to Biogenic and Anthropogenic Influences: Relationship to Degree of Aerosol Oxidation. Atmos. Chem. Phys., 10:5047–5064.
  • Chuang, W. K., and Donahue, N. M. (2016). A Two-Dimensional Volatility Basis Set – Part 3: Prognostic Modeling and NOx Dependence. Atmos. Chem. Phys., 16:123–134.
  • Daumit, K. E., Kessler, S. H., and Kroll, J. H. (2013). Average Chemical Properties and Potential Formation Pathways of Highly Oxidized Organic Aerosol. Faraday Discuss., 165:181–202.
  • Donahue, N. M., Chuang, W., Epstein, S. A., Kroll, J. H., Worsnop, D. R., Robinson, A. L., Adams, P. J., and Pandis, S. N. (2013). Why do Organic Aerosols Exist? Understanding Aerosol Lifetimes Using the Two-Dimensional Volatility Basis Set. Environ. Chem., 10:151–157.
  • Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L. (2011). A Two-Dimensional Volatility Basis Set: 1. Organic-Aerosol Mixing Thermodynamics. Atmos. Chem. Phys., 11:3303–3318.
  • Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L. (2012). A Two-Dimensional Volatility Basis Set - Part 2: Diagnostics of Organic-Aerosol Evolution. Atmos. Chem. Phys., 12:615–634.
  • Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N. (2006). Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environ. Sci. Technol., 40:2635–2643.
  • Ervens, B., Turpin, B. J., and Weber, R. J. (2011). Secondary Organic Aerosol Formation in Cloud Droplets and Aqueous Particles (aqSOA): A Review of Laboratory, Field and Model Studies. Atmos. Chem. Phys., 11:11069–11102.
  • Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J. (1999). Cloud Albedo Enhancement by Surface-Active Organic Solutes in Growing Droplets. Nature, 401:257–259.
  • Frosch, M., Bilde, M., DeCarlo, P. F., Jurányi, Z., Tritscher, T., Dommen, J., Donahue, N. M., Gysel, M., Weingartner, E., and Baltensperger, U. (2011). Relating Cloud Condensation Nuclei Activity and Oxidation Level of α-Pinene Secondary Organic Aerosols. J. Geophys. Res., 116:D22212.
  • Frosch, M., Zardini, A. A., Platt, S. M., Müller, L., Reinnig, M. C., Hoffmann, T., and Bilde, M. (2010). Thermodynamic Properties and Cloud Droplet Activation of a Series of Oxo-Acids. Atmos. Chem. Phys., 10:5873–5890.
  • Giordano, M. R., Short, D. Z., Hosseini, S., Lichtenberg, W., and Asa-Awuku, A. A. (2013). Changes in Droplet Surface Tension Affect the Observed Hygroscopicity of Photochemically Aged Biomass Burning Aerosol. Environ. Sci. Technol., 47:10980–10986.
  • Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K., DeCarlo, P. F., Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P. (2010). A Simplified Description of the Evolution of Organic Aerosol Composition in the Atmosphere. Geophys. Res. Lett., 37:L08803.
  • Hu, J., Zhang, X., and Wang, Z. (2010). A Review on Progress in QSPR Studies for Surfactants. Int. J. Mol. Sci., 11:1020–1047.
  • Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R. J., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R. (2009). Evolution of Organic Aerosols in the Atmosphere. Science, 326:1525–1529.
  • Kreidenweis, S. M., Koehler, K., DeMott, P. J., Prenni, A. J., Carrico, C., and Ervens, B. (2005). Water Activity and Activation Diameters from Hygroscopicity Data - Part I: Theory and Application to Inorganic Salts. Atmos. Chem. Phys., 5:1357–1370.
  • Kreidenweis, S. M., Petters, M. D., and Chuang, P. Y. (2009). Cloud Particle Precursors. The MIT Press, Cambridge, MA.
  • Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M., Wilson, K. R., Altieri, K. E., Mazzoleni, C., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R. (2011). Carbon Oxidation State as a Metric for Describing the Chemistry of Atmospheric Organic Aerosol. Nat. Chem., 3:133–139.
  • Kuwata, M., Shao, W., Lebouteiller, R., and Martin, S. T. (2013). Classifying Organic Materials by Oxygen-to-Carbon Elemental Ratio to Predict the Activation Regime of Cloud Condensation Nuclei (CCN). Atmos. Chem. Phys., 13:5309–5324.
  • Kuwata, M., Zorn, S. R., and Martin, S. T. (2012). Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen. Environ. Sci. Technol., 46:787–794.
  • Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P., Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits, P. (2011). Laboratory Studies of the Chemical Composition and Cloud Condensation Nuclei (CCN) Activity of Secondary Organic Aerosol (SOA) and Oxidized Primary Organic Aerosol (OPOA). Atmos. Chem. Phys., 11:8913–8928.
  • Langmuir, I. (1917). The Constitution and Fundamental Properties of Solids and Liquids. II. Liquids. J. Am. Chem. Soc., 39:1848–1906.
  • Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez, J. L., Weber, R. J., Anderson, B. E., and Nenes, A. (2013). Analysis of CCN Activity of Arctic Aerosol and Canadian Biomass Burning During Summer 2008. Atmos. Chem. Phys., 13:2735–2756.
  • Li, Z., and Lu, B. C. Y. (2001). Surface Tension of Aqueous Electrolyte Solutions at High Concentrations — Representation and Prediction. Chem. Eng. Sci., 56:2879–2888.
  • Long, F. A., and McDevit, W. F. (1952). Activity Coefficients of Nonelectrolyte Solutes in Aqueous Salt Solutions. Chem. Rev., 51:119–169.
  • Lowe, S., Partridge, D. G., Topping, D., and Stier, P. (2016). Inverse Modelling of Köhler Theory – Part 1: A Response Surface Analysis of CCN Spectra with Respect to Surface-Active Organic Species. Atmos. Chem. Phys., 16:10941–10963.
  • Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkilä, J., Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne, J. T., Petäjä, T., Kulmala, M., Laaksonen, A., Kolb, C. E., Davidovits, P., and Worsnop, D. R. (2010). Relationship Between Aerosol Oxidation Level and Hygroscopic Properties of Laboratory Generated Secondary Organic Aerosol (SOA) Particles. Geophys. Res. Lett., 37:L24801.
  • McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E. (2006). The Effect of Physical and Chemical Aerosol Properties on Warm Cloud Droplet Activation. Atmos. Chem. Phys., 6:2593–2649.
  • Mei, F., Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., Kuster, W., de Gouw, J., Jimenez, J. L., and Wang, J. (2013a). Droplet Activation Properties of Organic Aerosols Observed at an Urban Site During CalNex-LA. J. Geophys. Res.: Atmos., 118:2903–2917.
  • Mei, F., Setyan, A., Zhang, Q., and Wang, J. (2013b). CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions During CARES. Atmos. Chem. Phys., 13:12155–12169.
  • Murphy, B. N., Donahue, N. M., Fountoukis, C., Dall'Osto, M., O'Dowd, C., Kiendler-Scharr, A., and Pandis, S. N. (2012). Functionalization and Fragmentation During Ambient Organic Aerosol Aging: Application of the 2-D Volatility Basis Set to Field Studies. Atmos. Chem. Phys., 12:10797–10816.
  • Nakao, S., Tang, P., Tang, X., Clark, C. H., Qi, L., Seo, E., Asa-Awuku, A., and Cocker III, D. (2013). Density and Elemental Ratios of Secondary Organic Aerosol: Application of a Density Prediction Method. Atmos. Environ., 68:273–277.
  • Paciga, A. L., Riipinen, I., and Pandis, S. N. (2014). Effect of Ammonia on the Volatility of Organic Diacids. Environ. Sci. Technol., 48:13769–13775.
  • Padro, L. T., Asa-Awuku, A., Morrison, R., and Nenes, A. (2007). Inferring Thermodynamic Properties from CCN Activation Experiments: Single-Component and Binary Aerosols. Atmos. Chem. Phys., 7:5263–5274.
  • Pankow, J. F., and Asher, W. E. (2008). SIMPOL.1: A Simple Group Contribution Method for Predicting Vapor Pressures and Enthalpies of Vaporization of Multifunctional Organic Compounds. Atmos. Chem. Phys., 8:2773–2796.
  • Petters, M. D., and Kreidenweis, S. M. (2007). A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity. Atmos. Chem. Phys., 7:1961–1971.
  • Petters, M. D., and Kreidenweis, S. M. (2008). A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity - Part 2: Including Solubility. Atmos. Chem. Phys., 8:6273–6279.
  • Petters, M. D., and Kreidenweis, S. M. (2013). A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity - Part 3: Including Surfactant Partitioning. Atmos. Chem. Phys., 13:1081–1091.
  • Petters, M. D., Kreidenweis, S. M., Prenni, A. J., Sullivan, A., Carrico, C. M., Koehler, K. A., and Ziemann, P. J. (2009). Role of Molecular Size in Cloud Droplet Activation. Geophys. Res. Lett., 36:L22801.
  • Petters, M. D., Kreidenweis, S. M., and Ziemann, P. J. (2016). Prediction of Cloud Condensation Nuclei Activity for Organic Compounds Using Functional Group Contribution Methods. Geosci. Model Dev., 9:111–124.
  • Petters, S. S., and Petters, M. D. (2016). Surfactant Effect on Cloud Condensation Nuclei for Two-Component Internally Mixed Aerosols. J. Geophys. Res.: Atmos., 121:1878–1895.
  • Prisle, N. L., Asmi, A., Topping, D., Partanen, A. I., Romakkaniemi, S., Dal Maso, M., Kulmala, M., Laaksonen, A., Lehtinen, K. E. J., McFiggans, G., and Kokkola, H. (2012). Surfactant Effects in Global Simulations of Cloud Droplet Activation. Geophys. Res. Lett., 39:L05802.
  • Prisle, N. L., Raatikainen, T., Laaksonen, A., and Bilde, M. (2010). Surfactants in Cloud Droplet Activation: Mixed Organic-Inorganic Particles. Atmos. Chem. Phys., 10:5663–5683.
  • Pruppacher, H. R., and Klett, J. D. (1997). Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, Dordrecht.
  • Raatikainen, T., and Laaksonen, A. (2011). A Simplified Treatment of Surfactant Effects on Cloud Drop Activation. Geosci. Model Dev., 4:107–116.
  • Raatikainen, T., and Laaksonen, A. (2014). Comment on “Changes in Droplet Surface Tension Affect the Observed Hygroscopicity of Photochemically Aged Biomass Burning Aerosol.” Environ. Sci. Technol., 48:2082–2083.
  • Rickards, A. M. J., Miles, R. E. H., Davies, J. F., Marshall, F. H., and Reid, J. P. (2013). Measurements of the Sensitivity of Aerosol Hygroscopicity and the κ Parameter to the O/C Ratio. J. Phys. Chem. A, 117:14120–14131.
  • Riipinen, I., Rastak, N., and Pandis, S. N. (2015). Connecting the Solubility and CCN Activation of Complex Organic Aerosols: A Theoretical Study Using Solubility Distributions. Atmos. Chem. Phys., 15:6305–6322.
  • Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U. (2008). Calibration and Measurement Uncertainties of a Continuous-Flow Cloud Condensation Nuclei Counter (DMT-CCNC): CCN Activation of Ammonium Sulfate and Sodium Chloride Aerosol Particles in Theory and Experiment. Atmos. Chem. Phys., 8:1153–1179.
  • Rosenørn, T., Kiss, G., and Bilde, M. (2006). Cloud Droplet Activation of Saccharides and Levoglucosan Particles. Atmos. Environ., 40:1794–1802.
  • Ruehl, C. R., Chuang, P. Y., Nenes, A., Cappa, C. D., Kolesar, K. R., and Goldstein, A. H. (2012). Strong Evidence of Surface Tension Reduction in Microscopic Aqueous Droplets. Geophys. Res. Lett., 39:L23801, doi: 23810.21029/22012GL053706.
  • Ruehl, C. R., Davies, J. F., and Wilson, K. R. (2016). An Interfacial Mechanism for Cloud Droplet Formation on Organic Aerosols. Science 351:1447–1450.
  • Shiraiwa, M., Berkemeier, T., Schilling-Fahnestock, K. A., Seinfeld, J. H., and Pöschl, U. (2014). Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmos. Chem. Phys., 14:8323–8341.
  • Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young, T. E. (1996). Dissolution Behavior and Surface Tension Effects of Organic Compounds in Nucleating Cloud Droplets. Geophys. Res. Lett., 23:277–280.
  • Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., and Laaksonen, A. (2004). The Role of Surfactants in Köhler Theory Reconsidered. Atmos. Chem. Phys., 4:2107–2117.
  • Suda, S. R., Petters, M. D., Yeh, G. K., Strollo, C., Matsunaga, A., Faulhaber, A., Ziemann, P. J., Prenni, A. J., Carrico, C. M., Sullivan, R. C., and Kreidenweis, S. M. (2014). Influence of Functional Groups on Organic Aerosol Cloud Condensation Nucleus Activity. Environ. Sci. Technol., 48:10182–10190.
  • Topping, D. (2010). An Analytical Solution to Calculate Bulk Mole Fractions for Any Number of Components in Aerosol Droplets After Considering Partitioning to a Surface Layer. Geosci. Model Dev., 3:635.
  • Wong, J. P. S., Lee, A. K. Y., Slowik, J. G., Cziczo, D. J., Leaitch, W. R., Macdonald, A., and Abbatt, J. P. D. (2011). Oxidation of Ambient Biogenic Secondary Organic Aerosol by Hydroxyl Radicals: Effects on Cloud Condensation Nuclei Activity. Geophys. Res. Lett., 38:L22805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.