1,785
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Chemistry of hydroperoxycarbonyls in secondary organic aerosol

&
Pages 1178-1193 | Received 22 Feb 2018, Accepted 23 Jul 2018, Published online: 14 Sep 2018

References

  • Aimanant, S., and P. J. Ziemann. 2013a. Development of Spectrophotometric Methods for the Analysis of Functional Groups in Oxidized Organic Aerosol. Aerosol Sci. Technol. 47 (6):581–91. doi: 10.1080/02786826.2013.773579.
  • Aimanant, S., and P. J. Ziemann. 2013b. Chemical Mechanisms of Aging of Aerosol Formed from the Reaction of n-Pentadecane with OH Radicals in the Presence of NOx. Aerosol Sci. Technol. 47 (9):979–90. doi: 10.1080/02786826.2013.804621.
  • Antonovskii, V. L., and V. A. Terent’ev. 1967. Effect of the Structure of Hydroperoxides and Some Aldehydes on the Kinetics of the Noncatalytic Formation of α-Hydroxy Peroxides. Zhurnal Org. Khimii. 3:1011–15.
  • Atkinson, R. 1997. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. J. Phys. Chem. Ref. Data. 26 (2):215–90. doi:10.1063/1.556012.
  • Atkinson, R., and J. Arey. 2003. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 103 (12):4605–38. doi:10.1021/cr0206420.
  • Bertram, A. K., S. T. Martin, S. J. Hanna, M. L. Smith, A. Bodsworth, Q. Chen, M. Kuwata, A. Liu, Y. You, and S. R. Zorn. 2011. Predicting the Relative Humidities of Liquid-Liquid Phase Separation, Efflorescence, and Deliquescence of Mixed Particles of Ammonium Sulfate, Organic Material, and Water Using the Organic-to-Sulfate Mass Ratio of the Particle and the Oxygen-to-Carbon Elemental Ratio of the Organic Component. Atmos. Chem. Phys. 11 (21):10995–1006. doi:10.5194/acp-11-10995-2011.
  • Borisova, I. A., V. I. Kadentsev, S. S. Zlotskii, O. S. Chizhov, M. R. Skurko, D. L. Rakhmankulov, and R. A. Karakhanov. 1981. Behavior of Acetals Under Chemical Ionization Conditions. Russ. Chem. Bull. 30 (7):1219–24. doi: 10.1007/BF01417976.
  • Bruckner, R. 2002. Advanced Organic Chemistry. San Diego, CA: Harcourt/Academic Press.
  • Capouet, M., J. F. Müller, K. Ceulemans, S. Compernolle, L. Vereecken, and J. Peeters. 2008. Modeling Aerosol Formation in Alpha-Pinene Photo-Oxidation Experiments. J. Geophys. Res. 113 (D2):D02308. doi:10.1029/2007JD008995.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler. 1998. A Thermodynamic Model of the System H+–NH4+–Na+–SO42−–NO3—Cl−–H2O at 298.15 K. J. Phys. Chem. A. 102 (12):2155–71. doi:10.1021/jp973043j.
  • Crounse, J. D., L. B. Nielsen, S. Jørgensen, H. G. Kjaergaard, and P. O. Wennberg. 2013. Autoxidation of Organic Compounds in the Atmosphere. J. Phys. Chem. Lett. 4 (20):3513–20. doi:10.1021/jz4019207.
  • de Gouw, J., and C. Warneke. 2007. Measurements of Volatile Organic Compounds in the Earth’s Atmosphere Using Proton-Transfer-Reaction Mass Spectrometry. Mass Spec. Rev. 26 (2):223–57. doi:10.1002/mas.20119.
  • Docherty, K. S., W. Wu, Y. B. Lim, and P. J. Ziemann. 2005. Contributions of Organic Peroxides to Secondary Aerosol Formed from Reactions of Monoterpenes with O3. Environ. Sci. Technol. 39 (11):4049–59. doi:10.1021/es050228s.
  • Docherty, K. S., and P. J. Ziemann. 2003. Effects of Stabilized Criegee Intermediate and OH Radical Scavengers on Aerosol Formation from Reactions of β-Pinene with O3. Aerosol. Sci. Technol. 37 (11):877–91. doi:10.1080/02786820300930.
  • Docherty, K. S., and P. J. Ziemann. 2006. Reaction of Oleic Acid Particles with NO3 Radicals: Products, Mechanism, and Implications for Radical-Initiated Organic Aerosol Oxidation. J. Phys. Chem. A. 110 (10):3567–77. doi:10.1021/jp0582383.
  • Donahue, N. M., G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll. 2011. Adventures in Ozoneland: Down the Rabbit-Hole. Phys. Chem. Chem. Phys. 13 (23): 10848–57. doi:10.1039/c0cp02564j.
  • Durham, L. J., C. F. Wurster, and H. S. Mosher. 1958. Peroxides. VIII. The Mechanism for the Thermal Decomposition of n-Butyl Hydroperoxide and n-Butyl 1-Hydroxybutyl Peroxide. J. Am. Chem. Soc. 80 (2):332–7. doi:10.1021/ja01535a020.
  • Ehn, M., E. Kleist, H. Junninen, T. Petäjä, G. Lönn, S. Schobesberger, M. Dal Maso, A. Trimborn, M. Kulmala, D. R. Worsnop, et al. 2012. Gas Phase Formation of Extremely Oxidized Pinene Reaction Products in Chamber and Ambient Air. Atmos. Chem. Phys. 12 (11):5113–27. doi:10.5194/acp-12-5113-2012.
  • Ehn, M., J. A. Thornton, E. Kleist, M. Sipilä, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, et al. 2014. A Large Source of Low-Volatility Secondary Organic Aerosol. Nature. 506 (7489):476–9. doi:10.1038/nature13032.
  • Epstein, S. A., S. L. Blair, and S. A. Nizkorodov. 2014. Direct Photolysis of α-Pinene Ozonolysis Secondary Organic Aerosol: Effect on Particle Mass and Peroxide Content. Environ. Sci. Technol. 48 (19):11251–8. doi:10.1021/es502350u.
  • Friedel, R. A., and A. G. Sharkey. 1956. Mass Spectra of Acetal-Type Compounds. Anal. Chem. 28 (6):940–4. doi:10.1021/ac60114a004.
  • Gao, S., M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan, and J. H. Seinfeld. 2004. Low-Molecular-Weight and Oligomeric Components in Secondary Organic Aerosol from the Ozonolysis of Cycloalkenes and α-Pinene. J. Phys. Chem. A. 108 (46):10147–64. doi:10.1021/jp047466e.
  • Gao, Y., W. A. Hall, and M. V. Johnston. 2010. Molecular Composition of Monoterpene Secondary Organic Aerosol at Low Mass Loading. Environ. Sci. Technol. 44 (20):7897–902. doi:10.1021/es101861k.
  • Griesbaum, K., and J. Neumeister. 1982. Ozonolysis of Symmetrically 1,2-Disubstituted Ethylenes in HCl/Methanol Solutions: Acid Catalyzed Reactions of Primary Cleavage Products. Chem. Berichte-Recueil. 115:2697–706. doi:10.1002/cber.19821150803.
  • Guo, H., J. Liu, K. D. Froyd, J. M. Roberts, P. R. Veres, P. L. Hayes, J. L. Jimenez, A. Nenes, and R. J. Weber. 2017. Fine Particle pH and Gas–Particle Phase Partitioning of Inorganic Species in Pasadena, California, During the 2010 CalNex Campaign. Atmos. Chem. Phys. 17 (9):5703–19. doi:10.5194/acp-17-5703-2017.
  • Guo, H., L. Xu, A. Bougiatioti, K. M. Cerully, S. L. Capps, J. R. Hite Jr, A. G. Carlton, S.-H. Lee, M. H. Bergin, N. L. Ng, et al. 2015. Fine-Particle Water and pH in the Southeastern United States. Atmos. Chem. Phys. 15 (9):5211–28. doi:10.5194/acp-15-5211-2015.
  • Hayes, M. J., and D. C. Pepper. 1961. The Solubility of H2SO4 in 1,2-Dichloroethane. Trans. Faraday Soc. 57:432–5. doi:10.1039/TF9615700432.
  • Krapf, M., I. El Haddad, E. A. Bruns, U. Molteni, K. R. Daellenbach, A. S. H. Prévôt, U. Baltensperger, and J. Dommen. 2016. Labile Peroxides in Secondary Organic Aerosol. Chem. 1 (4):603–16. doi:10.1016/j.chempr.2016.09.007.
  • Kristensen, K., Å. K. Watne, J. Hammes, A. Lutz, T. Petäjä, M. Hallquist, M. Bilde, and M. Glasius. 2016. High-Molecular Weight Dimer Esters are Major Products in Aerosols from α-Pinene Ozonolysis and the Boreal Forest. Environ. Sci. Technol. Lett. 3 (8):280–5. doi:10.1021/acs.estlett.6b00152.
  • Lin, S. T., L. L. Tien, and N. C. Chang. 1989. Mass Spectra of Some Acetals. Analyst. 114 (9):1083–5. doi:10.1039/AN9891401083.
  • Matsunaga, A., and P. J. Ziemann. 2009. Yields of β-Hydroxynitrates and Dihydroxynitrates in Aerosol Formed from OH Radical-Initiated Reactions of Linear Alkenes in the Presence of NOx. J. Phys. Chem. A. 113 (3):599–606. doi:10.1021/jp807764d.
  • McGillen, M. R., B. F. E. Curchod, R. Chhantyal-Pun, J. M. Beames, N. Watson, M. A. H. Khan, L. McMahon, D. E. Shallcross, and A. J. Orr-Ewing. 2017. Criegee Intermediate-Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere. Earth Space Chem. 1 (10):664–72. doi:10.1021/acsearthspacechem.7b00108.
  • McLafferty, F. W. 2012. Mass Spectrometry of Organic Ions. 4th ed. Sausalito, CA: University Science Books.
  • Mertes, P., L. Pfaffenberger, J. Dommen, M. Kalberer, and U. Baltensperger. 2012. Development of a Sensitive Long Path Absorption Photometer to Quantify Peroxides in Aerosol Particles (Peroxide-LOPAP). Atmos. Meas. Tech. 5 (10):2339–48. doi:10.5194/amt-5-2339-2012.
  • Müller, L., M. C. Reinnig, J. Warnke, and T. Hoffmann. 2008. Unambiguous Identification of Esters as Oligomers in Secondary Organic Aerosol Formed from Cyclohexene and Cyclohexene/Α-Pinene Ozonolysis. Atmos. Chem. Phys. 8 (5):1423–33. doi:10.5194/acp-8-1423-2008.
  • Mutzel, A., L. Poulain, T. Berndt, Y. Iinuma, M. Rodigast, O. Böge, S. Richters, G. Spindler, M. Sipila, T. Jokinen, et al. 2015. Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study. Environ. Sci. Technol. 49 (13):7754–61. doi:10.1021/acs.est.5b00885.
  • Orlando, J. J., and G. S. Tyndall. 2012. Laboratory Studies of Organic Peroxy Radical Chemistry: An Overview with Emphasis on Recent Issues of Atmospheric Significance. Chem. Soc. Rev. 41 (19):6294–317. doi:10.1039/c2cs35166h.
  • Peng, Z., D. A. Day, H. Stark, R. Li, J. Lee-Taylor, B. B. Palm, W. H. Brune, and J. L. Jimenez. 2015. HOx Radical Chemistry in Oxidation Flow Reactors with Low-Pressure Mercury Lamps Systematically Examined by Modeling. Atmos. Meas. Tech. 8 (11):4863–90. doi:10.5194/amt-8-4863-2015.
  • Praske, E., R. V. Otkjaer, J. D. Crounse, J. C. Hethcox, B. M. Stoltz, H. G. Kjaergaard, and P. O. Wennberg. 2018. Atmospheric Autoxidation is Increasingly Important in Urban and Suburban North America. Proceed. Natl. Acad. Sci. USA. 115 (1):64–9. doi:10.1073/pnas.1715540115.
  • Ranney, A. P., and P. J. Ziemann. 2016. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor. J. Phys. Chem. A. 120 (16):2561–8. doi:10.1021/acs.jpca.6b01402.
  • Ranney, A. P., and P. J. Ziemann. 2017. Identification and Quantification of Oxidized Organic Aerosol Compounds Using Derivatization, Liquid Chromatography, and Chemical Ionization Mass Spectrometry. Aerosol Sci. Technol. 51 (3): 342–53. doi:10.1080/02786826.2016.1271108.
  • Riva, M., S. H. Budisulistiorini, Z. Zhang, A. Gold, J. A. Thornton, B. J. Turpin, and J. D. Surratt. 2017. Multiphase Reactivity of Gaseous Hydroperoxide Oligomers Produced from Isoprene Ozonolysis in the Presence of Acidified Aerosols. Atmos. Environ. 152:314–22. doi:10.1016/j.atmosenv.2016.12.040.
  • Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 2003. Environmental Organic Chemistry. Hoboken, NJ: JohnWiley & Sons, Inc.
  • SDBSWeb. 2017. National Institute of Advanced Industrial Science and Technology. Accessed December. http://sdbs.db.aist.go.jp.
  • Stein, S. E. 2016. Mass Spectra. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, eds. P. J. Linstrom and W. G. Mallard. Gaithersburg, MD: National Institute of Standards and Technology.
  • Tobias, H. J., P. M. Kooiman, K. S. Docherty, and P. J. Ziemann. 2000. Real-Time Chemical Analysis of Organic Aerosols Using a Thermal Desorption Particle Beam Mass Spectrometer. Aerosol Sci. Technol. 33 (1–2):170–90. doi:10.1080/027868200410912.
  • Tobias, H. J., and P. J. Ziemann. 2000. Thermal Desorption Mass Spectrometric Analysis of Organic Aerosol Formed from Reactions of 1-Tetradecene and O3 in the Presence of Alcohols and Carboxylic Acids. Environ. Sci. Technol. 34 (11):2105–15. doi:10.1021/es9907156.
  • Tobias, H. J., and P. J. Ziemann. 2001. Kinetics of the Gas-Phase Reactions of Alcohols, Aldehydes, Carboxylic Acids, and Water with the C13 Stabilized Criegee Intermediate Formed from Ozonolysis of 1-Tetradecene. J. Phys. Chem. A. 105 (25):6129–35. doi:10.1021/jp004631r.
  • Vinnik, M. I., and P. A. Obraztsov. 1990. The Mechanism of the Dehydration of Alcohols and the Hydration of Alkenes in Acid Solution. Russ. Chem. Rev. 59 (1):63–77. doi:10.1070/RC1990v059n01ABEH003510.
  • Wexler, A. S., and S. L. Clegg. 2002. Atmospheric Aerosol Models for Systems Including the Ions H+, NH4+, na+, SO42–, NO3–, cl–, br–, and H2O. J. Geophys. Res. 107 (D14):ACH14.1–ACH14.14. doi:10.1029/2001JD000451.
  • Wurster, C. F., L. J. Durham, and H. S. Mosher. 1958. Peroxides. VII. The Thermal Decomposition of Primary Hydroperoxides. J. Am. Chem. Soc. 80 (2):327–331. doi:10.1021/ja01535a019.
  • Zelikman, E. S., Y. N. Yur’ev, L. B. Berezova, and V. K. Tsyskovskii. 1971. Ozonolysis of Olefins in the Presence of Aliphatic Alcohols and Acids. Zhurnal Org. Khimii. 7:633–6.
  • Zhang, Y., Y. Chen, A. T. Lambe, N. E. Olson, Z. Lei, R. L. Craig, Z. Zhang, A. Gold, T. B. Onasch, J. T. Jayne, et al. 2018. Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX). Environ. Sci. Technol. Lett. 5 (3):167–74. doi:10.1021/acs.estlett.8b00044.
  • Ziemann, P. J. 2002. Evidence for Low-Volatility Diacyl Peroxides as a Nucleating Agent and Major Component of Aerosol Formed from Reactions of O3 with Cyclohexene and Homologous Compounds. J. Phys. Chem. A. 106 (17):4390–402. doi:10.1021/jp012925m.
  • Ziemann, P. J. 2003. Formation of Alkoxyhydroperoxy Aldehydes and Cyclic Peroxyhemiacetals from Reactions of Cyclic Alkenes with O3 in the Presence of Alcohols. J. Phys. Chem. A. 107 (12):2048–60. doi:10.1021/jp022114y.
  • Ziemann, P. J., and R. Atkinson. 2012. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chem. Soc. Rev. 41 (19):6582–605. doi:10.1039/c2cs35122f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.