3,458
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Effect of venting range hood flow rate on size-resolved ultrafine particle concentrations from gas stove cooking

ORCID Icon, , , , , , , & show all
Pages 1370-1381 | Received 24 Apr 2018, Accepted 24 Aug 2018, Published online: 05 Nov 2018

References

  • Abt, E., H. H. Suh, P. Catalano, and P. Koutrakis. 2000. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ. Sci. Technol. 34 (17):3579–3587.
  • ASTM. 2006. Standard test method for determining air change in a single zone by means of a tracer gas dilution. E741-00, West Conshohocken, PA.
  • Buonanno, G., L. Morawska, and L. Stabile. 2009. Particle emission factors during cooking activities. Atmos. Environ. 43 (20):3235–3242.
  • Chalupa, D. C., P. E. Morrow, G. Oberdörster, M. J. Utell, and M. W. Frampton. 2004. Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 112 (8):879–882.
  • Delp, W. W., and B. C. Singer. 2012. Performance assessment of U.S. residential cooking exhaust hoods. Environ. Sci. Technol. 46 (11):6167–6173.
  • Dietz, R. N., R. W. Goodrich, E. A. Cote, and R. F. Wieser. 1986. Detailed description and performance of passive perfluorocarbon tracer system for building ventilation and air exchange measurements. STM STP 904, American Society for Testing and Materials, Philadelphia, PA.
  • Dobbin, N. A., L. Sun, L. A. Wallace, J. Kearney, R. Kulka, H. You, T. Shin, M. St-Jean, D. Aubin, and B. C. Singer. 2018. The benefit of kitchen exhaust fan use after cooking—An experimental assessment. Build. Environ. 135 (1):286–296.
  • Fogh, C. L., M. A. Byrne, J. Roed, and A. J. H. Goddard. 1997. Size specific indoor aerosol deposition measurements and derived i/o concentrations ratios. Atmos. Environ. 31 (15):2193–2203.
  • Howard-Reed, C., L. A. Wallace, and S. Emmerich. 2003. Effect of ventilation systems and air filters on decay rates of particles produced by indoor sources in an occupied townhouse. Atmos. Environ. 37 (38):5295–5306.
  • IRC. 2015. 2015 International Residential Code, chapter 15: Exhaust systems. Accessed July 10, 2018. https://codes.iccsafe.org/public/document/IRC2015/chapter-15-exhaust-systems.
  • Kearney, J., L. A. Wallace, M. MacNeill, X. Xu, K. VanRyswyk, H. You, R. Kulka, and A. J. Wheeler. 2011. Residential indoor and outdoor ultrafine particles in Windsor, Ontario. Atmos. Environ. 45 (40):7583–7593.
  • Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. 2001. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Exposure Sci. Environ. Epidemiol. 11 (3):231–252.
  • Kreyling, W. G., M. Semmler-Behnke, and W. Möller. 2006. Ultrafine particle-lung interactions: Does size matter? J. Aerosol. Med. 19 (1):74–83.
  • Lee, W. C., J. M. Wolfson, P. J. Catalano, S. N. Rudnick, and P. Koutrakis. 2014. Size-resolved deposition rates for ultrafine and submicrometer particles in a residential housing unit. Environ. Sci. Technol. 48 (17):10282–10290.
  • Li, C., W. Lin, and F. Jenq. 1993. Removal efficiency of particulate matter by a range exhaust fan. Environ. Int. 19 (4):371–380.
  • Li, Y., and A. Delsante. 1996. Derivation of capture efficiency of kitchen range hoods in a confined space. Build. Environ. 31 (5):461–468.
  • Li, Y., A. Delsante, and J. Symons. 1997. Residential kitchen range hoods—Buoyancy-capture principle and capture efficiency revisited. Indoor Air 7 (3):151–157.
  • Long, C. M., H. H. Suh, P. J. Catalano, and P. Koutrakis. 2001. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behaviour. Environ. Sci. Technol. 35 (10):2089–2099.
  • Lunden, M. M., W. W. Delp, and B. C. Singer. 2015. Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods. Indoor Air 25 (1):45–58.
  • Meier, R., M. Eeftens, I. Aguilera, H. C. Phuleria, A. Ineichen, M. Davey, M. S. Ragettli, M. Fierz, C. Schindler, N. Probst-Hensch, M.-Y. Tsai, and N. Künzli. 2015. Ambient ultrafine particle levels at residential and reference sites in urban and rural Switzerland. Environ. Sci. Technol. 49 (5):2709–2715.
  • Nomura, Y., P. K. Hopke, B. Fitzgerald, and B. Mesbah. 1997. Deposition of particles in a chamber as a function of ventilation rate. Aerosol Sci. Technol. 27 (1):62–72.
  • Oberdörster, G., R. M. Celein, J. Ferin, and B. Weiss. 1995. Association of particulate air pollution and acute mortality: Involvement of ultrafine particles? Inhal. Toxicol. 7 (1):111–124.
  • Ott, W. R. 2007. Mathematical modeling of indoor air quality. In Exposure analysis, ed. W. R. Ott, A. C. Steinemann, and L. A. Wallace, 411–444. Boca Raton, FL: CRC-Press, Taylor & Francis Group.
  • Özkaynak, H., J. Xue, J. Spengler, L. Wallace, E. Pellizzari, and P. Jenkins. 1996. Personal exposure to airborne particles and metals: Results from the particle team study in Riverside, California. J. Expo. Anal. Environ. Epidemiol. 6 (1):57–78.
  • Palmiter, L., and T. Bond. 1991. Interaction of mechanical systems and natural infiltration. Paper presented at the 12th AIVC Conference, Ottawa, Canada.
  • Pekkanen, J., A. Peters, G. Hoek, P. Tiittanen, B. Brunekreef, J. de Hartog, J. Heinrich, A. Ibald-Mulli, W. G. Kreyling, T. Lanki, K. L. Timonen, and E. Vanninen. 2002. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: The exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) study. Circulation 106 (8):933–938.
  • Rim, D., L. A. Wallace, S. Nabinger, and A. Persily. 2012. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: The effects of exhaust flow rates, particle size, and burner position. Sci. Total Environ. 432:350–356.
  • Seinfeld, J. H., and S. N. Pandis. 2006. Atmospheric chemistry and physics: from air pollution to climate change. 2nd ed. New York: John Wiley & Sons.
  • Sherman, M. H. 1992. Superposition in infiltration modeling. Indoor Air 2 (2):101–114.
  • Singer, B. C., R. Z. Pass, W. W. Delp, D. M. Lorenzetti, and R. L. Maddalena. 2017. Pollutant concentrations and emission factors from scripted natural gas cooking burner use in nine Northern California homes. Build. Environ. 122:215–229.
  • Singer, B. C., W. W. Delp, P. N. Price, and M. G. Apte. 2012. Performance of installed cooking exhaust devices. Indoor Air 22 (3):224–234.
  • Sioutas, C., R. J. Delfino, and M. Singh. 2005. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect. 113 (8):947–955.
  • Strak, M., H. Boogaard, K. Meliefste, M. Oldenwening, M. Zuurbier, B. Brunekreef, and G. Hoek. 2010. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup. Environ. Med. 67 (2):118–124.
  • Thatcher, T. L., A. C. K. Lai, R. Moreno-Jackson, R. G. Sextro, and W. W. Nazaroff. 2002. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 36 (11):1811–1819.
  • von Klot, S., G. Wolke, T. Tuch, J. Heinrich, D. W. Dockery, J. Schwartz, W. G. Kreyling, H. E. Wichmann, and A. Peters. 2002. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur. Respir. Soc. 20 (3):691–702.
  • Wallace, L. A. 2006. Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations, and source strengths. Aerosol Sci. Technol. 40 (5):348–360.
  • Wallace, L. A., S. J. Emmerich, and C. Howard-Reed. 2002. Continuous measurements of air change rates in an occupied house for 1 year: The effect of temperature, wind, fans, and windows. J. Expo. Sci. Environ. Epidemiol. 12 (4):296–306.
  • Wallace, L. A., S. J. Emmerich, and C. Howard-Reed. 2004a. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ. Sci. Technol. 38 (8):2304–2311.
  • Wallace, L. A., S. J. Emmerich, and C. Howard-Reed. 2004b. Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse. Atmos. Environ. 38 (3):405–413.
  • Wallace, L. A., and W. R. Ott. 2011. Personal exposure to ultrafine particles. J. Expo. Sci. Environ. Epidemiol. 21 (1):20–30.
  • Wallace, L. A., W. R. Ott, and C. J. Weschler. 2015. Ultrafine particles from electric appliances and cooking pans: experiments suggesting desorption/nucleation of sorbed organics as the primary source. Indoor Air 25 (5):536–546.
  • Wallace, L. A., F. Wang, C. Howard-Reed, and A. Persily. 2008. Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 nm and 64 nm: Size distributions and emission and coagulation rates. Environ. Sci. Technol. 42 (23):8641–8647.
  • Wheeler, A. J., L. A. Wallace, J. Kearney, K. Van Ryswyk, H. You, R. Kulka, J. R. Brook, and X. Xu. 2011. Personal, indoor, and outdoor concentrations of fine and ultrafine particles using continuous monitors in multiple residences. Aerosol Sci. Technol. 45 (9):1078–1089.
  • Wichmann, H. E., C. Spix, T. Tuch, G. Wölke, A. Peters, H. Heinrich, W. G. Kregling, and J. Heyder. 2000. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: Role of particle number and particle mass. Health Effects Inst. Res. Rep. 98:5–86.
  • Zhang, Q., R. H. Gangupomu, D. Ramirez, and Y. Zhu. 2010. Measurement of ultrafine particles and other air pollutants emitted by cooking activities. Int. J. Environ. Res. Public Health 7 (4):1744–1759.