2,792
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of a new miniCAST with diffusion flame and premixed flame options: Generation of particles with high EC content in the size range 30 nm to 200 nm

&
Pages 29-44 | Received 06 Jul 2018, Accepted 30 Sep 2018, Published online: 15 Nov 2018

References

  • Abegglen, M., B. T. Brem, M. Ellenrieder, L. Durdina, T. Rindlisbacher, J. Wang, U. Lohmann, and B. Sierau. 2016. Chemical Characterization of Freshly Emitted Particulate Matter from Aircraft Exhaust Using Single Particle Mass Spectrometry. Atmos. Environ. 134:181–97. doi:10.1016/j.atmosenv.2016.03.051.
  • Anderson, T. L., D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, et al. 1996. Performance Characteristics of a High-Sensitivity Three-Wavelength Total Scatter/Backscatter Nephelometer. J. Atmos. Oceanic Technol. 13 (5):967–86. doi:10.1175/1520-0426(1996)013 < 0967:PCOAHS >2.0.CO;2.
  • Argonaut Scientific Corporation. 2018. Miniature Inverted Soot Generator. Accessed June 5, 2018. https://www.argonautscientific.com/products.
  • Arnott, W. P., H. Moosmüller, C. F. Rogers, T. Jin, and R. Bruch. 1999. Photoacoustic Spectrometer for Measuring Light Absorption by Aerosol: Instrument Description. Atmos. Environ. 33 (17):2845–52. doi:10.1016/S1352-2310(98)00361-6.
  • Birmili, W., J. Sun, K. Weinhold, M. Merkel, F. Rasch, G. Spindler, A. Wiedensohler, S. Bastian, G. Löschau, A. Schladitz, et al. 2015. Atmospheric Aerosol Measurements in the German Ultrafine Aerosol Network (GUAN) Part 3: Black Carbon Mass and Particle Number Concentrations 2009 to 2014. Gefahrstoffe - Reinhaltung Der Luft. 75 (11/12):479–88.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols. Aerosol. Sci. Technol. 30 (6):582–600. doi:10.1080/027868299304435.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. Deangelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch., et al. 2013. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Buseck, P. R., K. Adachi, A. Gelencsér, É. Tompa, and M. Pósfai. 2012. Are Black Carbon and Soot the Same? Atmos. Chem. Phys. Discuss 12 (9):24821–46. doi:10.5194/acpd-12-24821-2012.
  • Caroca, J. C., F. Millo, D. Vezza, T. Vlachos, A. De Filippo, S. Bensaid, N. Russo, and D. Fino. 2011. Detailed Investigation on Soot Particle Size Distribution During DPF Regeneration, Using Standard and Bio-diesel Fuels. Ind. Eng. Chem. Res. 50 (5):2650–8. doi:10.1021/ie1006799.
  • Cavalli, F., M. Viana, K. E. Yttri, J. Genberg, and J. P. Putaud. 2010. Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EUSAAR Protocol. Atmos. Meas. Tech. 3 (1):79–89. doi:10.5194/amt-3-79-2010.
  • Cheng, M. D., E. Corporan, M. J. Dewitt, and B. Landgraf. 2009. Emissions of Volatile Particulate Components from Turboshaft Engines Pperated with JP-8 and Fischer-Tropsch Fuels. Aerosol Air Qual. Res. 9 (2):237–56. doi:10.4209/aaqr.2008.11.0059.
  • Chow, J. C., J. G. Watson, D. Crow, D. H. Lowenthal, and T. Merrifield. 2001. Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Sci. Technol. 34 (1):23–34. doi:10.1080/02786820119073.
  • Drinovec, L., G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, et al. 2015. The “Dual-Spot” Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation. Atmos. Meas. Tech. 8 (5):1965–79. doi:10.5194/amt-8-1965-2015.
  • Durdina, L., B. T. Brem, A. Setyan, F. Siegerist, T. Rindlisbacher, and J. Wang. 2017. Assessment of Particle Pollution from Jetliners: From Smoke Visibility to Nanoparticle Counting. Environ. Sci. Technol. 51 (6):3534–41. doi:10.1021/acs.est.6b05801.
  • Durdina, L., P. Lobo, M. B. Trueblood, E. A. Black, S. Achterberg, D. E. Hagen, B. T. Brem, and J. Wang. 2016. Response Of Real-Time Black Carbon Mass Instruments to Mini-CAST Soot. Aerosol Sci. Technol. 50 (9):906–18. doi:10.1080/02786826.2016.1204423.
  • Eckbreth, A. C. 1977. Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics. J. Appl. Phys. 48 (11):4473–79. doi:10.1063/1.323458.
  • Ess, M. N., H. Bladt, W. Mühlbauer, S. I. Seher, C. Zöllner, S. Lorenz, D. Brüggemann, U. Nieken, N. P. Ivleva, and R. Niessner. 2016. Reactivity and Structure of Soot Generated at Varying Biofuel Content and Engine Operating Parameters. Combust. Flame 163:157–69. doi:10.1016/j.combustflame.2015.09.016.
  • EU. 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner air for Europe. Off. J. Eur. Union 152:1–43.
  • Ghazi, R., H. Tjong, A. Soewono, S. N. Rogak, and J. S. Olfert. 2013. Mass, Mobility, Volatility, and Morphology of Soot Particles Generated by a McKenna and Inverted Burner. Aerosol Sci. Technol. 47 (4):395–405. doi:10.1080/02786826.2012.755259.
  • Hansen, A. D. A., H. Rosen, and T. Novakov. 1984. The Aethalometer — An Instrument for the Real-Time Measurement of Optical Absorption by Aerosol Particles. Sci. Total Environ. 36:191–196. doi:10.1016/0048-9697(84)90265-1.
  • Hays, M. D., and R. L. Vander Wal. 2007. Heterogeneous Soot Nanostructure in Atmospheric and Combustion Source Aerosols. Energy Fuels 21 (2):801–11. doi:10.1021/ef060442h.
  • Helsper, C., W. Mölter, F. Löffler, C. Wadenpohl, S. Kaufmann, and G. Wenninger. 1993. Investigations of a New Aerosol Generator for the Production of Carbon Aggregate Particles. Atmos. Environ. Part A, Gen. Top. 27 (8):1271–1275. doi:10.1016/0960-1686(93)90254-V.
  • Herndon, S. C., J. T. Jayne, P. Lobo, T. B. Onasch, G. Fleming, D. E. Hagen, P. D. Whitefield, and R. C. Miake-Lye. 2008. Commercial Aircraft Engine Emissions Characterization of In-use Aircraft at Hartsfield-Jackson Atlanta International Airport. Environ. Sci. Technol. 42 (6):1877–83. doi:10.1021/es072029+.
  • Heyder, J., J. Gebhart, G. Rudolf, C. F. Schiller, and W. Stahlhofen. 1986. Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005–15 μm. J. Aerosol. Sci. 17 (5):811–25. doi:10.1016/0021-8502(86)90035-2.
  • Horvath, H. 1993. Atmospheric Light Absorption- A Review. Atmos. Environ. 27 (3):293–317. doi:10.1016/0960-1686(93)90104-7.
  • Jing Ltd. 2018. CAST Combustion Aerosol Standard. Accessed May 1, 2018. http://www.sootgenerator.com/index.htm.
  • Kampa, M., and E. Castanas. 2008. Human Health Effects of Air Pollution. Environ. Pollut. 151 (2):362–367. doi:10.1016/j.envpol.2007.06.012.
  • Kastelis, N., and E. Zervas. 2008. Analysis of Flat Burners Used to Study Gaseous Pollutants Emitted From Combustion of Hydrocarbons. 2nd International Conference Waste Management Water Pollution, Air Pollution, Indoor Climate Corfu. Greece, World Scientific and Engineering Academy and Society WSEAS Press, October 26–28, 251–56.
  • Kennedy, I. M. 2007. The Health Effects of Combustion-Generated Aerosols. Proc. Combust. Inst. 31 (2):2757–2770. doi:10.1016/j.proci.2006.08.116.
  • Kim, J., H. Bauer, T. Dobovičnik, R. Hitzenberger, D. Lottin, D. Ferry, and A. Petzold. 2015. Assessing Optical Properties and Refractive Index of Combustion Aerosol Particles Through Combined Experimental and Modeling Studies. Aerosol Sci. Technol. 49 (5):340–50. doi:10.1080/02786826.2015.1020996.
  • Kinsey, J. S., Y. Dong, D. C. Williams, and R. Logan. 2010. Physical Characterization of the Fine Particle Emissions from Commercial Aircraft Engines during the Aircraft Particle Emissions Experiment (APEX) 1-3. Atmos. Environ. 44 (17):2147–56. doi:10.1016/j.atmosenv.2010.02.010.
  • Kinsey, J. S., M. D. Hays, Y. Dong, D. C. Williams, and R. Logan. 2011. Chemical Characterization of the Fine Particle Emissions from Commercial Aircraft Engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3. Environ. Sci. Technol. 45 (8):3415–21. doi:10.1021/es103880d.
  • Kittelson, D. B. 1998. Engines and Nanoparticles: A Review. J. Aerosol Sci. 29 (5–6):575–88. doi:10.1016/S0021-8502(97)10037-4.
  • Kiwull, B., J. C. Wolf, and R. Niessner. 2015. Response Characteristics of PMP Compliant Condensation Particle Counters Toward Various Calibration Aerosols. Aerosol. Sci. Technol 49 (2):98–108. doi:10.1080/02786826.2014.1002603.
  • Lobo, P., L. Durdina, G. J. Smallwood, T. Rindlisbacher, F. Siegerist, E. A. Black, Z. Yu, A. A. Mensah, D. E. Hagen, R. C. Miake-Lye, et al. 2015. Measurement of Aircraft Engine Non-volatile PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 Campaign. Aerosol Sci. Technol. 49 (7):472–84. doi:10.1080/02786826.2015.1047012.
  • Lu, T., Z. Huang, C. S. Cheung, and J. Ma. 2012. Size Distribution of EC, OC and Particle-Phase PAHs Emissions from a Diesel Engine Fueled with Three Fuels. Sci. Total Environ. 438:33–41. doi:10.1016/j.scitotenv.2012.08.026.
  • Mamakos, A., I. Khalek, R. Giannelli, and M. Spears. 2013. Characterization of Combustion Aerosol Produced by a Mini-CAST and Treated in a Catalytic Stripper. Aerosol Sci. Technol. 47 (8):927–936. doi:10.1080/02786826.2013.802762.
  • Maricq, M. M. 2004. Size and Charge of Soot Particles in Rich Premixed Ethylene Flames. Combust. Flame 137 (3):340–50. doi:10.1016/j.combustflame.2004.01.013.
  • Maricq, M. M. 2014. Examining the Relationship Between Black Carbon and Soot in Flames and Engine Exhaust. Aerosol Sci. Technol. 48 (6):620–29. doi:10.1080/02786826.2014.904961.
  • McMurry, P. H. 2000. A Review of Atmospheric Aerosol Measurements. Atmos. Environ. 34 (12–14):1959–99. doi:10.1016/S1352-2310(99)00455-0.
  • Melton, L. A. 1984. Soot Diagnostics Based on Laser Heating. Appl. Opt 23 (13):2201–8. doi:10.1364/AO.23.002201.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-Induced Incandescence: Particulate Diagnostics for Combustion, Atmospheric, and Industrial Applications. Prog. Energy Combust. Sci. 51:2–48. doi:10.1016/j.pecs.2015.07.001.
  • Moore, R. H., L. D. Ziemba, D. Dutcher, A. J. Beyersdorf, K. Chan, S. Crumeyrolle, T. M. Raymond, K. L. Thornhill, E. L. Winstead, and B. E. Anderson. 2014. Mapping the Operation of the Miniature Combustion Aerosol Standard (mini-CAST) Soot Generator. Aerosol. Sci. Technol. 48 (5):467–79. doi:10.1080/02786826.2014.890694.
  • Penner, J. E., M. O. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, et al. 2001. Aerosols, Their Direct Indirect Effect. In IPCC Third Assessment Report: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson. Cambridge and New York: Cambridge University Press.
  • Petzold, A., J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, et al. 2013. Recommendations for Reporting “Black Carbon” Measurements. Atmos. Chem. Phys. 13 (16):8365–79. doi:10.5194/acp-13-8365-2013.
  • Petzold, A., and M. Schönlinner. 2004. Multi-Angle Absorption Photometry - A New Method for the Measurement of Aerosol Light Absorption and Atmospheric Black Carbon. J. Aerosol Sci. 35 (4):421–41. doi:10.1016/j.jaerosci.2003.09.005.
  • Popovitcheva, O. B., N. M. Persiantseva, M. E. Trukhin, G. B. Rulev, N. K. Shonija, Y. Ya. Buriko, A. M. Starik, B. Demirdjian, D. Ferry, and J. Suzanne. 2000. Experimental Characterization of Aircraft Combustor Soot: Microstructure, Surface Area, Porosity and Water Adsorption. Phys. Chem. Chem. Phys. 2 (19):4421–26. doi:10.1039/b004345l.
  • Pöschl, U. 2005. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chemie – Int. Ed. 44 (46):7520–40. doi:10.1002/anie.200501122.
  • Puzun, A., S. Wanchen, L. Guoliang, T. Manzhi, L. Chunjie, and C. Shibao. 2011. Characteristics of Particle Size Distributions About Emissions in a Common-Rail Diesel Engine with Biodiesel Blends. Procedia Environ. Sci. 11 (C):1371–8. doi:10.1016/j.proenv.2011.12.206.
  • Ramanathan, V., G. Carmichael, V. Ramanathan, G. Carmichael, V. Ramanathan, and G. Carmichael. 2008. Global and Regional Climate Changes Due to Black Carbon. Nature Geosci. 1 (4):221–7. doi:10.1038/ngeo156.
  • Saffaripour, M., L. L. Tay, K. A. Thomson, G. J. Smallwood, B. T. Brem, L. Durdina, and M. Johnson. 2017. Raman Spectroscopy and TEM Characterization of Solid Particulate Matter Emitted from Soot Generators and Aircraft Turbine Engines. Aerosol Sci. Technol. 51 (4):518–531. Taylor & Francis: doi:10.1080/02786826.2016.1274368.
  • Schnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke. 2006. Strong Spectral Dependence of Light Absorption by Organic Carbon Particles formed by Propane Combustion. Atmos. Chem. Phys. 6 (10):2981–90. doi:10.5194/acp-6-2981-2006.
  • Schnaiter, M., H. Horvath, O. Möhler, K. H. Naumann, H. Saathoff, and O. W. Schöck. 2003. UV-VIS-NIR Spectral Optical Properties of Soot and Soot-Containing Aerosols. J. Aerosol Sci. 34 (10):1421–44. doi:10.1016/S0021-8502(03)00361-6.
  • Slowik, J. G., K. Stainken, P. Davidovits, L. R. Williams, J. T. Jayne, C. E. Kolb, D. R. Worsnop, Y. Rudich, P. F. DeCarlo, and J. L. Jimenez. 2004. Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. Aerosol Sci. Technol. 38 (12):1206–22. doi:10.1080/027868290903916.
  • Stipe, C. B., B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer. 2005. Inverted Co-flow Diffusion Flame for Producing Soot. Rev. Sci. Instrum. 76 (2):23908. doi:10.1063/1.1851492.
  • Sydbom, A., A. Blomberg, S. Parnia, N. Stenfors, T. Sandström, and S. E. Dahlén. 2001. Health Effects of Diesel Exhaust Emissions. Eur. Respir. J. 17 (4):733–46. doi:10.1183/09031936.01.17407330.
  • Taylor, P., A. Y. Watson, and P. A. Valberg. 2001. Carbon Black and Soot: Two Different Substances. Am. Ind. Hyg. Assoc. 62 (2):218–28. doi:10.1080/15298660108984625.
  • Török, S., V. B. Malmborg, J. Simonsson, A. Eriksson, J. Martinsson, M. Mannazhi, J. Pagels, and P.-E. Bengtsson. 2018. Investigation of the Absorption Ångström Exponent and Its Relation to Physicochemical Properties for Mini-CAST Soot. Aerosol Sci. Technol. 52 (7):757–67. doi:10.1080/02786826.2018.1457767.
  • Tuch, T.,. K. Weinhold, M. Merkel, A. Nowak, T. Klein, P. Quincey, M. Stolzenburg, and A. Wiedensohler. 2016. Dependence of CPC Cut-Off Diameter on Particle Morphology and Other Factors. Aerosol Sci. Technol. 50 (4):331–8. doi:10.1080/02786826.2016.1152351.
  • Vander Wal, R. L., and A. J. Tomasek. 2004. Soot Nanostructure: Dependence upon Synthesis Conditions. Combust. Flame 136 (1–2):129–140. doi:10.1016/j.combustflame.2003.09.008.
  • Vander Wal, R. L., and K. J. Weiland. 1994. Laser-Induced Incandescence: Development and Characterization Towards a Measurement of Soot-Volume Fraction. Appl. Phys. B 59 (4):445–52. doi:10.1007/BF01081067.
  • Virkkula, A., N. C. Ahlquist, D. S. Covert, P. J. Sheridan, W. P. Arnott, and J. A. Ogren. 2005. A Three-Wavelength Optical Extinction Cell for Measuring Aerosol Light Extinction and Its Application to Determining Light Absorption Coefficient. Aerosol. Sci. Technol. 39 (1):52–67. doi:10.1080/027868290901918.