1,046
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical modeling of the performance of high flow DMAs to classify sub-2 nm particles

, , ORCID Icon, &
Pages 106-118 | Received 10 Jul 2018, Accepted 11 Nov 2018, Published online: 20 Dec 2018

References

  • Attoui, M., M. Paragano, J. Cuevas, and J. F. de la Mora. 2013. Tandem DMA generation of strictly monomobile 1–3.5 nm particle standards. Aerosol Sci. Technol. 47(5):499–511. doi: 10.1080/02786826.2013.764966.
  • Biswas, P., and C.-Y. Wu. 2005. Nanoparticles and the environment. J. Air Waste Manage. Assoc. 55:708–746. doi: 10.1080/10473289.2005.10464656.
  • Biswas, P., and R. C. Flagan. 1984. High-velocity inertial impactors. Environ. Sci. Technol. 18:611–616. doi: 10.1021/es00126a009.
  • Biswas, P., Y. Wang, and M. Attoui. 2018. Sub-2nm particle measurement in high-temperature aerosol reactors: A review. Curr. Opin. Chem. Eng. 21:60–66. doi: 10.1016/j.coche.2018.03.004.
  • Cai, R., D.-R. Chen, J. Hao, and J. Jiang. 2017. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing. J. Aerosol Sci. 106:111–119. doi: 10.1016/j.jaerosci.2017.01.004.
  • Cai, R., M. Attoui, J. Jiang, F. Korhonen, J. Hao, T. Petäjä, and J. Kangasluoma. 2018. Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates. Aerosol Sci. Technol. 52(11):1332–1343. doi: 10.1080/02786826.2018.1520964.
  • Carbone, F., M. Attoui, and A. Gomez. 2016. Challenges of measuring nascent soot in flames as evidenced by high-resolution differential mobility analysis. Aerosol Sci. Technol. 50(7):740–757. doi: 10.1080/02786826.2016.1179715.
  • Chen, D.-R., and D. Y. Pui. 1997. Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements. J. Aerosol Sci. 28(6):985–1004. doi: 10.1016/S0021-8502(97)00004-9.
  • Chen, D.-R., D. Y. Pui, D. Hummes, H. Fissan, F. Quant, and G. Sem. 1998. Design and evaluation of a nanometer aerosol differential mobility analyzer (nano-DMA). J. Aerosol Sci. 29(56):497–509. doi: 10.1016/S0021-8502(97)10018-0.
  • Chen, S., W. Liu, and S. Li. 2016. Effect of long-range electrostatic repulsion on pore clogging during microfiltration. Phys. Rev. E 94:063108. doi: 10.1103/PhysRevE.94.063108.
  • de la Mora, J. F. 2011. Sub-3 nm aerosol measurement with DMAs and CNCs. In Aerosol measurement: Principles techniques, and applications, ed. P. Kulkarni, P. A. Baron, and K. Willeke, 697–722. 3rd ed. John Wiley & Sons, New York.
  • de la Mora, J. F. 2017. Expanded flow rate range of high-resolution nanoDMAs via improved sample flow injection at the aerosol inlet slit. J. Aerosol Sci. 113:265–275. doi: 10.1016/j.jaerosci.2017.07.020.
  • de la Mora, J. F., and C. Barrios-Collado. 2017. A bipolar electrospray source of singly charged salt clusters of precisely controlled composition. Aerosol Sci. Technol. 51:778–786. doi: 10.1080/02786826.2017.1302070.
  • de la Mora, J. F., and J. Kozlowski. 2013. Hand-held differential mobility analyzers of high resolution for 1–30 nm particles: Design and fabrication considerations. J. Aerosol Sci. 57:45–53. doi: 10.1016/j.jaerosci.2012.10.009.
  • Deye, G., P. Gao, P. Baron, and J. Fernback. 1999. Performance evaluation of a fiber length classifier. Aerosol Sci. Technol. 30:420–437. doi: 10.1080/027868299304471.
  • Fang, J., Y. Wang, M. Attoui, T. S. Chadha, J. R. Ray, W.-N. Wang, Y.-S. Jun, and P. Biswas. 2014. Measurement of Sub-2 nm clusters of pristine and composite metal oxides during nanomaterial synthesis in flame aerosol reactors. Anal. Chem. 86(15):7523–7529. doi: 10.1021/ac5012816.
  • Flagan, R. C. 1999. On differential mobility analyzer resolution. Aerosol Sci. Technol. 30:556–570. doi: 10.1080/027868299304417.
  • Friedlander, S. K. 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. Topics in chemical engineering. New York: Oxford University Press.
  • Hagwood, C. 1999. The DMA transfer function with Brownian motion a trajectory/Monte-Carlo approach. Aerosol Sci. Technol. 30:40–61. doi: 10.1080/027868299304877.
  • Hummes, D., S. Neumann, H. Fissan, and F. Stratmann. 1996. Experimental determination of the transfer function of a differential mobility analyzer (DMA) in the nanometer size range. Part. Part. Syst. Char. 13:327–332. doi: 10.1002/ppsc.19960130513.
  • Jiang, J., D.-R. Chen, and P. Biswas. 2007. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18(28):285603. doi: 10.1088/0957-4484/18/28/285603.
  • Jiang, J., M. Attoui, M. Heim, N. A. Brunelli, P. H. McMurry, G. Kasper, R. C. Flagan, K. Giapis, and G. Mouret. 2011. Transfer functions and penetrations of five differential mobility analyzers for sub-2 nm particle classification. Aerosol Sci. Technol. 45(4):480–492. doi: 10.1080/02786826.2010.546819.
  • Kangasluoma, J., M. Attoui, F. Korhonen, L. Ahonen, E. Siivola, and T. Petäjä. 2016. Characterization of a herrmann-type high-resolution differential mobility analyzer. Aerosol Sci. Technol. 50(3):222–229. doi: 10.1080/02786826.2016.1142065.
  • Kim, C., S. Kang, and D. Y. Pui. 2016. Removal of airborne Sub-3 nm particles using fibrous filters and granular activated carbons. Carbon 104:125–132. doi: 10.1016/j.carbon.2016.03.060.
  • Kim, S., K. Woo, B. Liu, and M. Zachariah. 2005. Method of measuring charge distribution of nanosized aerosols. J. Colloid Interface Sci. 282(1):46–57. doi: 10.1016/j.jcis.2004.08.066.
  • Knutson, E., and K. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6(6):443–451. doi: 10.1016/0021-8502(75)90060-9.
  • Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P. McMurry. 2004. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 35(2):143–176. doi: 10.1016/j.jaerosci.2003.10.003.
  • Li, S., Y. Ren, P. Biswas, and D. T. Stephen. 2016. Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics. Progress Energy Combus. Sci. 55:1–59. doi: 10.1016/j.pecs.2016.04.002.
  • Maißer, A., V. Premnath, A. Ghosh, T. A. Nguyen, M. Attoui, and C. J. Hogan. 2011. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction. Phys. Chem. Chem. Phys. 13(48):21630–21641. doi: 10.1039/C1CP22127B.
  • Mamakos, A., L. Ntziachristos, and Z. Samaras. 2007. Diffusion broadening of DMA transfer functions. Numerical validation of stolzenburg model. J. Aerosol Sci. 38(7):747–763. doi: 10.1016/j.jaerosci.2007.05.004.
  • Martínez-Lozano, P., and M. Labowsky. 2009. An experimental and numerical study of a miniature high resolution isopotential DMA. J. Aerosol Sci. 40:451–462. doi: 10.1016/j.jaerosci.2009.01.004.
  • Nie, Y., Y. Wang, and P. Biswas. 2017. Mobility and bipolar diffusion charging characteristics of crumpled reduced graphene oxide nanoparticles synthesized in a furnace aerosol reactor. J. Phys. Chem. C 121(19):10529–10537. doi: 10.1021/acs.jpcc.7b00189.
  • Sahu, M., J. Park, and P. Biswas. 2012. In situ charge characterization of TiO2 and Cu–TiO2 nanoparticles in a flame aerosol reactor. J. Nanoparticle Res. 14:678. doi: 10.1007/s11051-011-0678-3.
  • Sharma, G., S. Dhawan, N. Reed, R. Chakrabarty, and P. Biswas. 2018. Collisional growth rate and correction factor for TiO2 nanoparticles at high temperatures in free molecular regime. J. Aerosol Sci. 127:27–37. doi: 10.1016/j.jaerosci.2018.10.002.
  • Song, D. K., H. M. Lee, H. Chang, S. S. Kim, M. Shimada, and K. Okuyama. 2006. Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. J. Aerosol Sci. 37(5):598–615. doi: 10.1016/j.jaerosci.2005.06.003.
  • Stark, W. J., and S. E. Pratsinis. 2002. Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2):103–108. doi: 10.1016/S0032-5910(02)00077-3.
  • Stolzenburg, M. R. 1988. An ultrafine aerosol size distribution measuring system. PhD diss., Department of Mechanical Engineering, University of Minnesota.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42(6):421–432. doi: 10.1080/02786820802157823.
  • Ude, S., and J. Fernández de la Mora. 2005. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36(10):1224–1237. doi: 10.1016/j.jaerosci.2005.02.009.
  • Wang, Y., J. Fang, M. Attoui, T. S. Chadha, W.-N. Wang, and P. Biswas. 2014. Application of half mini dma for Sub 2 nm particle size distribution measurement in an electrospray and a flame aerosol reactor. J. Aerosol Sci. 71:52–64. doi: 10.1016/j.jaerosci.2014.01.007.
  • Wang, Y., J. Kangasluoma, M. Attoui, J. Fang, H. Junninen, M. Kulmala, T. Petäjä, and P. Biswas. 2017. The high charge fraction of flame-generated particles in the size range below 3nm measured by enhanced particle detectors. Combust. Flame 176:72–80. doi: 10.1016/j.combustflame.2016.10.003.
  • Wang, Y., P. Liu, J. Fang, W.-N. Wang, and P. Biswas. 2015. Kinetics of Sub-2 nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide. J. Nanoparticle Res. 17:147. doi: 10.1007/s11051-015-2964-y.
  • Zhang, J., and D. Chen. 2014. Differential mobility particle sizers for nanoparticle characterization. J. Nanotechnol. Eng. Med. 5(2):020801. doi: 10.1115/1.4028040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.