2,418
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

A novel miniature inverted-flame burner for the generation of soot nanoparticles

ORCID Icon, , , ORCID Icon, ORCID Icon &
Pages 184-195 | Received 08 Jun 2018, Accepted 20 Nov 2018, Published online: 21 Dec 2018

References

  • Anenberg, S. C., L. W. Horowitz, D. Q. Tong, and J. J. West. 2010. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 118 (9):1189–95. doi: 10.1289/ehp.0901220.
  • Bescond, A., J. Yon, F. X. Ouf, C. Rozé, A. Coppalle, P. Parent, D. Ferry, and C. Laffon. 2016. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci. 101:118–32. doi: 10.1016/j.jaerosci.2016.08.001.
  • Botero, M. L., D. Chen, S. González-Calera, D. Jefferson, and M. Kraft. 2016. HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon 96:459–73. doi: 10.1016/j.carbon.2015.09.077.
  • Chakrabarty, R. K., H. Moosmüller, M. A. Garro, and C. B. Stipe. 2012. Observation of superaggregates from a reversed gravity low-sooting flame. Aerosol Sci. Technol. 46 (1):1–3. doi: 10.1080/02786826.2011.608389.
  • Coderre, A. R., K. A. Thomson, D. R. Snelling, and M. R. Johnson. 2011. Spectrally resolved light absorption properties of cooled soot from a methane flame. Appl. Phys. B 104 (1):175–88. doi: 10.1007/s00340-011-4448-9.
  • Crawford, I., O. Möhler, M. Schnaiter, H. Saathoff, D. Liu, G. McMeeking, C. Linke, M. Flynn, K. N. Bower, P. J. Connolly, et al. 2011. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements. Atmos. Chem. Phys. 11 (18):9549–61. doi: 10.5194/acp-11-9549-2011.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies-instrument inter-comparison-project overview. Aerosol Sci. Technol. 44 (8):592–611. doi: 10.1080/02786826.2010.482113.
  • Dickau, M., T. J. Johnson, K. Thomson, G. Smallwood, and J. S. Olfert. 2015. Demonstration of the CPMA-electrometer system for calibrating black carbon particulate mass instruments. Aerosol Sci. Technol. 49 (3):152–8. doi: 10.1080/02786826.2015.1010033.
  • Durdina, L., P. Lobo, M. B. Trueblood, E. A. Black, S. Achterberg, D. E. Hagen, B. T. Brem, and J. Wang. 2016. Response of real-time black carbon mass instruments to mini-CAST soot. Aerosol Sci. Technol. 50 (9):906–18. doi: 10.1080/02786826.2016.1204423.
  • Ghazi, R., and J. S. Olfert. 2013. Coating mass dependence of soot aggregate restructuring due to coatings of oleic acid and dioctyl sebacate. Aerosol Sci. Technol. 47 (2):192–200. doi: 10.1080/02786826.2012.741273.
  • Ghazi, R., H. Tjong, A. Soewono, S. N. Rogak, and J. S. Olfert. 2013. Mass, mobility, volatility, and morphology of soot particles generated by a McKenna and inverted burner. Aerosol Sci. Technol. 47 (4):395–405. doi: 10.1080/02786826.2012.755259.
  • Giechaskiel, B., M. Cresnoverh, H. Jörgl, and A. Bergmann. 2010. Calibration and accuracy of a particle number measurement system. Meas. Sci. Technol. 21 (4):045102. doi: 10.1088/0957-0233/21/4/045102.
  • Graskow, B. R., D. B. Kittelson, M. R. Ahmadi, and J. E. Morris. 1999. Exhaust particulate emissions from a direct injection spark ignition engine. SAE Technical Paper, no. 1999-01-1145. Warrendale, PA: SAE International. doi: 10.4271/1999-01-1145.
  • Gysel, M., M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau. 2012. Technical note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles. Atmos. Meas. Tech. 5 (12):3099–107. doi: 10.5194/amt-5-3099-2012.
  • He, M., and S. Dhaniyala. 2013. A multiple charging correction algorithm for scanning electrical mobility spectrometer data. J. Aerosol Sci. 61:13–26. doi: 10.1016/j.jaerosci.2013.03.007.
  • Henning, S., M. Ziese, A. Kiselev, H. Saathoff, O. Möhler, T. F. Mentel, A. Buchholz, C. Spindler, V. Michaud, M. Monier, et al. 2012. Hygroscopic growth and droplet activation of soot particles: Uncoated, succinic or sulfuric acid coated. Atmos. Chem. Phys. 12 (10):4525–37.doi: 10.5194/acp-12-4525-2012.
  • Johnson, T. J., M. Irwin, J. P. R. Symonds, J. S. Olfert, and A. M. Boies. 2018. Measuring aerosol size distributions with the aerodynamic aerosol classifier. Aerosol Sci. Technol. 52 (6):655–65. doi: 10.1080/02786826.2018.1440063.
  • Kayes, D., and S. Hochgreb. 1998. Investigation of the dilution process for measurement of particulate matter from Spark-Ignition engines. SAE Technical Paper 982601. Warrendale, PA: SAE International. doi: 10.4271/982601.
  • Kim, W., C. M. Sorensen, D. Fry, and A. Chakrabarti. 2006. Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J. Aerosol Sci. 37 (3):386–401. doi: 10.1016/j.jaerosci.2005.05.022.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–71. doi: 10.1038/nature15371.
  • Link, O., D. R. Snelling, K. A. Thomson, and G. J. Smallwood. 2011. Development of absolute intensity multi-angle light scattering for the determination of polydisperse soot aggregate properties. Proc. Combust. Inst. 33 (1):847–54. doi: 10.1016/j.proci.2010.06.073.
  • Mamakos, A., I. Khalek, R. Giannelli, and M. Spears. 2013. Characterization of combustion aerosol produced by a Mini-CAST and treated in a catalytic stripper. Aerosol Sci. Technol. 47 (8):927–36. doi: 10.1080/02786826.2013.802762.
  • Maricq, M. M. 2014. Examining the relationship between black carbon and soot in flames and engine exhaust. Aerosol Sci. Technol. 48 (6):620–29. doi: 10.1080/02786826.2014.904961.
  • Maricq, M. M., and N. Xu. 2004. The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J. Aerosol Sci. 35 (10):1251–74. doi: 10.1016/j.jaerosci.2004.05.002.
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo. 2002. Climate effects of black carbon aerosols in China and India. Science 297 (5590):2250–53. doi: 10.1126/science.1075159.
  • Moore, R. H., L. D. Ziemba, D. Dutcher, A. J. Beyersdorf, K. Chan, S. Crumeyrolle, T. M. Raymond, K. L. Thornhill, E. L. Winstead, and B. E. Anderson. 2014. Mapping the operation of the miniature combustion aerosol standard (Mini-CAST) soot generator. Aerosol Sci. Technol. 48 (5):467–79. doi: 10.1080/02786826.2014.890694.
  • Obeid, E., L. Lizarraga, M. N. Tsampas, A. Cordier, A. Boréave, M. C. Steil, G. Blanchard, K. Pajot, and P. Vernoux. 2014. Continuously regenerating diesel particulate filters based on ionically conducting ceramics. J. Catal. 309:87–96. doi: 10.1016/j.jcat.2013.09.004.
  • Obeid, E., M. N. Tsampas, S. Jonet, A. Boréave, L. Burel, M. C. Steil, G. Blanchard, K. Pajot, and P. Vernoux. 2014. Isothermal catalytic oxidation of diesel soot on yttria-stabilized zirconia. Solid State Ion. 262:253–6. doi: 10.1016/j.ssi.2013.12.015.
  • Onasch, T. B., A. Trimborn, E. C. Fortner, J. T. Jayne, G. L. Kok, L. R. Williams, P. Davidovits, and D. R. Worsnop. 2012. Soot particle aerosol mass spectrometer: Development, validation, and initial application. Aerosol Sci. Technol. 46 (7):804–17. doi: 10.1080/02786826.2012.663948.
  • Pagels, J., A. F. Khalizov, P. H. McMurry, and R. Y. Zhang. 2009. Processing of soot by controlled sulphuric acid and water condensation—Mass and mobility relationship. Aerosol Sci. Technol. 43 (7):629–40. doi: 10.1080/02786820902810685.
  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1 (4):221–27. doi: 10.1038/ngeo156.
  • Saffaripour, M., L.-L. Tay, K. A. Thomson, G. J. Smallwood, B. T. Brem, L. Durdina, and M. Johnson. 2017. Raman spectroscopy and TEM characterization of solid particulate matter emitted from soot generators and aircraft turbine engines. Aerosol Sci. Technol. 51 (4):518–31. doi: 10.1080/02786826.2016.1274368.
  • Stipe, C. B., B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer. 2005. Inverted co-flow diffusion flame for producing soot. Rev. Sci. Instrum. 76 (2):023908. doi: 10.1063/1.1851492.
  • Tavakoli, F., and J. S. Olfert. 2013. An instrument for the classification of aerosols by particle relaxation time: Theoretical models of the aerodynamic aerosol classifier. Aerosol Sci. Technol. 47 (8):916–26. doi: 10.1080/02786826.2013.802761.
  • Tavakoli, F., and J. S. Olfert. 2014. Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J. Aerosol Sci. 75:35–42. doi: 10.1016/j.jaerosci.2014.04.010.
  • Utry, N., T. Ajtai, M. Pintér, Z. Bozóki, and G. Szabó. 2014. Wavelength-dependent optical absorption properties of artificial and atmospheric aerosol measured by a multi-wavelength photoacoustic spectrometer. Int. J. Thermophys. 35 (12):2246–58. doi: 10.1007/s10765-014-1746-6.
  • Vander Wal, R. L., and A. J. Tomasek. 2004. Soot nanostructure: Dependence upon synthesis conditions. Combust. Flame 136 (12):129–40. doi: 10.1016/j.combustflame.2003.09.008.
  • Vander Wal, R. L., A. Yezerets, N. W. Currier, D. H. Kim, and C. M. Wang. 2007. HRTEM study of diesel soot collected from diesel particulate filters. Carbon 45 (1):70–7. doi: 10.1016/j.carbon.2006.08.005.
  • Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P. H. McMurry. 2008. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA 105 (30):10291–96. doi: 10.1073/pnas.0804860105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.