843
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study of aerodynamic resuspension of RDX residue

&
Pages 549-561 | Received 26 Sep 2018, Accepted 26 Jan 2019, Published online: 21 Mar 2019

References

  • Abdul-Karim, N., C. S. Blackman, P. P. Gill, R. M. Morgan, L. Matjacic, R. Webb, and W. H. Ng. 2016. Morphological variations of explosive residue particles and implications for understanding detonation mechanisms. Anal. Chem. 88 (7):3899. doi:10.1021/acs.analchem.6b00080.
  • Ahmadi, G., and S. Guo. 2007. Bumpy particle adhesion and removal in turbulent flows including electrostatic and capillary forces. J. Adhes. 83 (3):289–311. doi:10.1080/00218460701239174.
  • Alavi, G., M. Chung, J. Lichwa, M. D’alessio, and C. Ray. 2011. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: A laboratory and modeling study. J. Hazard. Mater. 185 (2-3):1600–1604. doi:10.1016/j.jhazmat.2010.10.039.
  • Ariessohn, P. C., and I. V. Novosselov. 2012. Aerosol collection apparatus and methods. US Patent 8539840, 09/24/2013. https://patents.google.com/patent/US8539840B2/en
  • Boor, B. E., J. A. Siegel, and A. Novoselac. 2013. Monolayer and multilayer particle deposits on hard surfaces: Literature review and implications for particle resuspension in the indoor environment. Aerosol Sci. Technol. 47 (8):831–847. doi:10.1080/02786826.2013.794928.
  • Braaten, D. A. 1994. Wind tunnel experiments of large particle reentrainment-deposition and development of large particle scaling parameters. Aerosol Sci. Technol. 21 (2):157–169. doi:10.1080/02786829408959705.
  • Chaffee-Cipich, M. N., B. D. Sturtevant, and S. P. Beaudoin. 2013. Adhesion of explosives. Anal. Chem. 85 (11):5358. doi:10.1021/ac302758n.
  • Chamberlain, R. T. 2002. Dry transfer method for the preparation of explosives test samples: Google Patents. US Patent 6470730B1. https://patents.google.com/patent/US6470730B1/en
  • Coleman, S. E., and V. I. Nikora. 2008. A unifying framework for particle entrainment. Water Resour. Res. 44. Article W04415. doi:10.1029/2007WR006363.
  • Dominik, C., and A. G. G. M. Tielens. 1995. Resistance to rolling in the adhesive contact of two elastic spheres. Philos. Mag. A 72 (3):783–803. doi:10.1080/01418619508243800.
  • Du, Y., C. Shen, H. Zhang, and Y. Huang. 2013. Effects of flow velocity and nonionic surfactant on colloid straining in saturated porous media under unfavorable conditions. Transp. Porous Media 98 (1):193–208. doi:10.1007/s11242-013-0140-3.
  • Fillingham, P., H. Murali, and I. V. Novosselov. 2017. Nondimensional parameter for characterization of wall shear stress from underexpanded axisymmetric impinging jets. J. Fluids Eng. 139 (11):111102. doi:10.1115/1.4037035.
  • Fillingham, P., X. Zhan, K. Kottapalli, and I. V. Novosselov. 2019. Characterization of adhesion force in aerodynamic particle resuspension. J. Aerosol Sci. 128:89–98. doi:10.1016/j.jaerosci.2018.11.006.
  • Fletcher, R., N. Briggs, E. Ferguson, and G. Gillen. 2008a. Measurements of air jet removal efficiencies of spherical particles from cloth and planar surfaces. Aerosol Sci. Technol. 42 (12):1052–1061. doi:10.1080/02786820802402237.
  • Fletcher, R. A., J. A. Brazin, M. E. Staymates, B. A. Benner, and J. G. Gillen. 2008b. Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process. Talanta 76 (4):949–955. doi:10.1016/j.talanta.2008.04.066.
  • Goldasteh, I., G. Ahmadi, and A. Ferro. 2012. A model for removal of compact, rough, irregularly shaped particles from surfaces in turbulent flows. J. Adhes. 88 (9):766–786. doi:10.1080/00218464.2012.694278.
  • Gradoń, L. 2009. Resuspension of particles from surfaces: Technological, environmental and pharmaceutical aspects. Adv. Powder Technol. 20 (1):17–28. doi:10.1016/j.apt.2008.10.009.
  • Halasz, A., C. Groom, E. Zhou, L. Paquet, C. Beaulieu, S. Deschamps, A. Corriveau, S. Thiboutot, G. Ampleman, C. Dubois, and J. Hawari. 2002. Detection of explosives and their degradation products in soil environments. J. Chromatogr. A 963 (1-2):411–418. doi:10.1016/S0021-9673(02)00553-8.
  • Henry, C., and J.-P. Minier. 2014. Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Energy Combust. Sci. 45:1–53. doi: 10.1016/j.pecs.2014.06.001.
  • Hu, B., J. D. Freihaut, W. P. Bahnfleth, and B. Thran. 2008. Measurements and factorial analysis of micron-sized particle adhesion force to indoor flooring materials by electrostatic detachment method. Aerosol Sci. Technol. 42(7):513–520. doi:10.1080/02786820802209129.
  • Hubbe, M. A. 1984. Theory of detachment of colloidal particles from flat surfaces exposed to flow. Colloids Surf. 12:151–178. doi:10.1016/0166-6622(84)80096-7.
  • Ibrahim, A. H., and P. F. Dunn. 2006. Effects of temporal flow acceleration on the detachment of microparticles from surfaces. J. Aerosol Sci. 37(10):1258–1266. doi:10.1016/j.jaerosci.2006.01.007.
  • Ibrahim, A. H., P. F. Dunn, and R. M. Brach. 2003. Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. J. Aerosol Sci. 34 (6):765–782. doi:10.1016/S0021-8502(03)00031-4.
  • Ibrahim, A. H., P. F. Dunn, and R. M. Brach. 2004. Microparticle detachment from surfaces exposed to turbulent air flow: Effects of flow and particle deposition characteristics. J. Aerosol Sci. 35 (7):805–821. doi:10.1016/j.jaerosci.2004.01.002.
  • Ibrahim, A. H., P. F. Dunn, and M. F. Qazi. 2008. Experiments and validation of a model for microparticle detachment from a surface by turbulent air flow. J. Aerosol Sci. 39 (8):645–656. doi:10.1016/j.jaerosci.2008.03.006.
  • Johnson, W. P., X. Li, and S. Assemi. 2007. Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 30 (6-7):1432–1454. doi:10.1016/j.advwatres.2006.05.020.
  • Kapur, J. P., and D. P. Casasent. 2000. Geometric correction of SEM images. Proc. SPIE 4044, Hybrid Image and Signal Processing VII, (17 July 2000), AEROSENSE 2000, Orlando, FL, USA, April 24–28.
  • Keedy, R., E. Dengler, P. Ariessohn, I. Novosselov, and A. Aliseda. 2012. Removal rates of explosive particles from a surface by impingement of a gas jet. Aerosol Sci. Technol. 46 (2):148–155. doi:10.1080/02786826.2011.616920.
  • Kim, Y., A. Gidwani, B. E. Wyslouzil, and C. W. Sohn. 2010. Source term models for fine particle resuspension from indoor surfaces. Build. Environ. 45 (8):1854–1865. doi:10.1016/j.buildenv.2010.02.016.
  • Kok, J. F., E. J. R. Parteli, T. I. Michaels, and D. B. Karam. 2012. The physics of wind-blown sand and dust. Rep. Progr. Phys. 75 (10):106901. doi:10.1088/0034-4885/75/10/106901.
  • Kottapalli, K. 2017. Aerodynamic removal and characterization of particulate trace residues on model surfaces: University of Washington Libraries. https://digital.lib.washington.edu/researchworks/handle/1773/40642.
  • Krasnobaev, L. Y., and S. N. Bunker. 2005. Virtual wall gas sampling for an ion mobility spectrometer: Google Patents. US Patent 20040155181. https://patents.google.com/patent/US20040155181
  • McCrone, W. C. 1950. Crystallographic data. 32. Rdx (cyclotrimethylenetrinitramine). Anal. Chem. 22 (7):954–955. doi:10.1021/ac60043a040.
  • McNown, J. S., and J. Malaika. 1950. Effects of particle shape on settling velocity at low Reynolds numbers. Trans. Am. Geophys. Union 31 (1):74–82. doi:10.1029/TR031i001p00074.
  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8):1598. doi:10.2514/3.12149.
  • Menter, F. R. 1993. Zonal two equation kappa-omega turbulence models for aerodynamic flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Fluid Dynamics and Co-located Conferences. NASA-TM-111629: Sponsoring organization. NASA Ames Research Center.
  • Murali, H. 2016. Characterization of wall shear stress of underexpanded impinging jets. M.S. Thesis. Novosselov, I. V., J. Riley, U. Shumlak, eds. ProQuest Dissertations Publishing. http://hdl.handle.net/1773/38054
  • Novosselov, I. V., P. C. Ariessohn, E. D. Dengler, and M. Hickner. 2012. Particle interrogation devices and methods: Google Patents. US Patent 8539840. https://patents.google.com/patent/US8539840B2/en
  • O'Neill, M. E. 1968. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Eng. Sci. 23:1293–1298. doi:10.1016/0009-2509(68)89039-6.
  • Oxley, J. C., J. L. Smith, G. L. Kagan, G. Zhang, and D. S. Swanson. 2016. Energetic material/polymer interaction studied by atomic force microscopy. Propellants Explos. Pyrotech. 41 (4):623–628. doi:10.1002/prep.201500161.
  • Phares, D. J., J. K. Holt, G. T. Smedley, and R. C. Flagan. 2000. Method for characterization of adhesion properties of trace explosives in fingerprints and fingerprint simulations. J. Forensic Sci. 45:774–784. doi.
  • Phares, D. J., G. T. Smedley, and R. C. Flagan. 2000. The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418:351–375. doi:10.1017/S002211200000121X.
  • Rabinovich, E., and H. Kalman. 2009. Incipient motion of individual particles in horizontal particle–fluid systems: A. Experimental analysis. Powder Technol. 192 (3):318–325. doi:10.1016/j.powtec.2009.01.013.
  • Reeks, M. W., and D. Hall. 2001. Kinetic models for particle resuspension in turbulent flows: Theory and measurement. J. Aerosol Sci. 32 (1):1–31. doi:10.1016/S0021-8502(00)00063-X.
  • Sharma, M. M., H. Chamoun, D. S. H. S. R. Sarma, and R. S. Schechter. 1992. Factors controlling the hydrodynamic detachment of particles from surfaces. J. Colloid Interface Sci. 149 (1):121–134. doi:10.1016/0021-9797(92)90398-6.
  • Smedley, G. T., D. J. Phares, and R. C. Flagan. 1999. Entrainment of fine particles from surfaces by gas jets impinging at normal incidence. Exp. Fluids 26 (4):324–334. doi:10.1007/s003480050295.
  • Soltani, M., and G. Ahmadi. 1999. Detachment of rough particles with electrostatic attraction from surfaces in turbulent flows. J. Adhes. Sci. Technol. 13 (3):325–355. doi:10.1163/156856199X00668.
  • Syage, J. A., and K. A. Hanold. 2008. Multiple trace portal detection systems: Google Patents. US Patent US20060196249. https://patents.google.com/patent/US20060196249
  • Taheri, M., and G. M. Bragg. 1992. A study of particle resuspension in a turbulent flow using a preston tube. Aerosol Sci. Technol. 16 (1):15–20. doi:10.1080/02786829208959534.
  • Tsai, C.-J., and S.-F. Chiou. 1999. Measurement of emission factor of road dust in a wind tunnel. J. Aerosol Sci. 30:S227–S228. doi:10.1016/S0021-8502(99)80125-6.
  • Tu, C. V., and D. H. Wood. 1996. Wall pressure and shear stress measurements beneath an impinging jet. Exp. Therm. Fluid Sci. 13 (4):364–373. doi:10.1016/S0894-1777(96)00093-3.
  • Verkouteren, J. R. 2007. Particle characteristics of trace high explosives: RDX and PETN. J. Forensic Sci. 52 (2):335–340. doi:10.1111/j.1556-4029.2006.00354.x.
  • Verkouteren, J. R., J. L. Coleman, and I. Cho. 2010. Automated mapping of explosives particles in composition c‐4 fingerprints. J. Forensic Sci. 55 (2):334–340. doi:10.1111/j.1556-4029.2009.01272.x.
  • White, F. M. 1986. Fluid mechanics. New York, N.Y: McGraw Hill.
  • Wolten, G., R. Nesbitt, A. Calloway, G. Loper, and P. Jones. 1979. Particle analysis for the detection of gunshot residue. I: Scanning electron microscopy/energy dispersive x-ray characterization of hand deposits from firing. J. Forensic Sci. 24:409–422. doi:10.1520/JFS10848J.
  • Xu, X., J. Mares, L. J. Groven, S. F. Son, R. G. Reifenberger, and A. Raman. 2015. Nanoscale characterization of mock explosive materials using advanced atomic force microscopy methods. J. Energ. Mater. 33 (1):51–65. doi:10.1080/07370652.2014.889780.
  • Young, R. M., M. J. Hargather, and G. S. Settles. 2013. Shear stress and particle removal measurements of a round turbulent air jet impinging normally upon a planar wall. J. Aerosol Sci. 62:15–25. doi:10.1016/j.jaerosci.2013.04.002.
  • Yu, H., T. Becker, N. Nic Daeid, and S. Lewis. 2017. Fundamental studies of the adhesion of explosives to textile and non-textile surfaces. Forensic Sci. Int. 273:88–95. doi:10.1016/j.forsciint.2017.02.008.
  • Zakon, Y., N. G. Lemcoff, A. Marmur, and Y. Zeiri. 2012. Adhesion of standard explosive particles to model surfaces. J. Phys. Chem. C 116 (43):22815–22822. doi:10.1021/jp303622n.
  • Ziskind, G. 2006. Particle resuspension from surfaces: Revisited and re-evaluated. Rev. Chem. Eng. 22 (1-2):1–123. doi:10.1515/REVCE.2006.22.1-2.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.