1,856
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The Spider DMA: A miniature radial differential mobility analyzer

ORCID Icon, , , , & ORCID Icon
Pages 175-189 | Received 02 Mar 2019, Accepted 26 May 2019, Published online: 19 Jun 2019

References

  • Barmpounis, K., A. Maisser, A. Schmidt-Ott, and G. Biskos. 2016. Lightweight differential mobility analyzers: toward new and inexpensive manufacturing methods. Aerosol Sci. Technol. 50 (1):2–v. doi: 10.1080/02786826.2015.1130216.
  • Brunelli, N. A., R. C. Flagan, and K. P. Giapis. 2009. Radial differential mobility analyzer for one nanometer particle classification. Aerosol Sci. Technol. 43 (1):53–59. doi: 10.1080/02786820802464302.
  • Chen, D.-R., D. Y. Pui, D. Hummes, H. Fissan, F. Quant, and G. Sem. 1998. Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci. 29 (5-6):497–509. doi: 10.1016/S0021-8502(97)10018-0.
  • Fissan, H., D. Hummes, F. Stratmann, P. Büscher, S. Neumann, D. Y. H. Pui, and D. Chen. 1996. Experimental comparison of four differential mobility analyzers for nanometer aerosol measurements. Aerosol Sci. Technol. 24 (1):1–13. doi: 10.1080/02786829608965347.
  • Fissan, H., A. Pöcher, S. Neumann, D. Boulaud, and M. Pourprix. 1998. Analytical and empirical transfer functions of a simplified spectrometre de mobilite electrique circulaire (SMEC) for nanoparticles. J. Aerosol Sci. 29 (3):289–293. doi: 10.1016/S0021-8502(97)10014-3.
  • Flagan, R. C. 1998. History of electrical aerosol measurements. Aerosol. Sci. Technol. 28 (4):301–380. doi: 10.1080/02786829808965530.
  • Flagan, R. C. 1999. On differential mobility analyzer resolution. Aerosol Sci. Technol. 30 (6):556–570. doi: 10.1080/027868299304417.
  • Heim, M., G. Kasper, G. P. Reischl, and C. Gerhart. 2004. Performance of a new commercial electrical mobility spectrometer. Aerosol Sci. Technol. 38 (sup2):3–14. doi: 10.1080/02786820490519252.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, and A. Eiguren-Fernandez. 2019. A MAGIC concept for self-sustained, water-based, ultrafine particle counting. Aerosol Sci. Technol. 53 (1):63–72. doi: 10.1080/02786826.2018.1538549.
  • Hering, S. V., S. R. Spielman, and G. S. Lewis. 2014. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48 (4):401–408. doi: 10.1080/02786826.2014.881460.
  • Johnson, K. K., M. H. Bergin, A. G. Russell, and G. S. W. Hagler. 2018. Field test of several low-cost particulate matter sensors in high and low concentration urban environments. Aerosol Air Qual. Res. 18 (3):565–578. doi: 10.4209/aaqr.2017.10.0418.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–451. doi: 10.1016/0021-8502(75)90060-9.
  • Kulkarni, P., C. Qi, and N. Fukushima. 2016. Development of portable aerosol mobility spectrometer for personal and mobile aerosol measurement. Aerosol Sci. Technol. 50 (11):1167–1179. doi: 10.1080/02786826.2016.1230662.
  • Liu, Q., and D.-R. Chen. 2016. Experimental evaluation of miniature plate DMAs (mini-plate DMAs) for future ultrafine particle (UFP) sensor network. Aerosol Sci. Technol. 50 (3):297–307. doi: 10.1080/02786826.2016.1149547.
  • Mai, H., and R. C. Flagan. 2018. Scanning DMA data analysis I. Classification transfer function. Aerosol Sci. Technol. 52 (12):1–18. doi: 10.1080/02786826.2018.1528005.
  • Mui, W., D. A. Thomas, A. J. Downard, J. L. Beauchamp, J. H. Seinfeld, and R. C. Flagan. 2013. Ion mobility-mass spectrometry with a radial opposed migration ion and aerosol classifier (ROMIAC). Anal. Chem. 85 (13):6319–6326. doi: 10.1021/ac400580u.
  • Ranjan, M., and S. Dhaniyala. 2007. Theory and design of a new miniature electrical-mobility aerosol spectrometer. J. Aerosol Sci. 38 (9):950–963. doi: 10.1016/j.jaerosci.2007.07.005.
  • Ranjan, M., and S. Dhaniyala. 2008. A new miniature electrical aerosol spectrometer (MEAS): experimental characterization. J. Aerosol Sci. 39 (8):710–722. doi: 10.1016/j.jaerosci.2008.04.005.
  • Rosell-Llompart, J., I. G. Loscertales, D. Bingham, and J. Fernández de la Mora. 1996. Sizing nanoparticles and ions with a short differential mobility analyzer. J. Aerosol Sci. 27 (5):695–719. doi: 10.1016/0021-8502(96)00016-X.
  • Santos, J. P., E. Hontañón, E. Ramiro, and M. Alonso. 2009. Performance evaluation of a high-resolution parallel-plate differential mobility analyzer. Atmos. Chem. Phys. 9 (7):2419–2429. doi: 10.5194/acp-9-2419-2009.
  • Steer, B., B. Gorbunov, R. Muir, A. Ghimire, and J. Rowles. 2014. Portable planar DMA: Development and tests. Aerosol Sci. Technol. 48 (3):251–260. doi: 10.1080/02786826.2013.868863.
  • Stolzenburg, M. R. 1988. An ultrafine aerosol size distribution measuring system. PhD diss., University of Minnesota.
  • Stolzenburg, M. R. 2018. A review of transfer theory and characterization of measured performance for differential mobility analyzers. Aerosol Sci. Technol. 52 (10):1194–1218. doi: 10.1080/02786826.2018.1514101.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–432. doi: 10.1080/02786820802157823.
  • Tritscher, T., M. Beeston, A. F. Zerrath, S. Elzey, T. J. Krinke, E. Filimundi, and O. F. Bischof. 2013. NanoScan SMPS – a novel, portable nanoparticle sizing and counting instrument. J. Phys. Conf. Ser. 429:012061. doi: 10.1088/1742-6596/429/1/012061.
  • Winklmayr, W., G. P. Reischl, A. O. Lindner, and A. Berner. 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J. Aerosol Sci. 22 (3):289–296. doi: 10.1016/S0021-8502(05)80007-2.
  • Zhang, S.-H., Y. Akutsu, L. M. Russell, R. C. Flagan, and J. H. Seinfeld. 1995. Radial differential mobility analyzer. Aerosol Sci. Technol. 23 (3):357–372. doi: 10.1080/02786829508965320.
  • Zhang, S.-H., and R. C. Flagan. 1996. Resolution of the radial differential mobility analyzer for ultrafine particles. J. Aerosol Sci. 27 (8):1179–1200. doi: 10.1016/0021-8502(96)00036-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.