1,898
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Optimizing the performance of aerosol photoacoustic cells using a finite element model. Part 1: Method validation and application to single-resonator multipass cells

ORCID Icon, , , , &
Pages 1107-1127 | Received 13 Mar 2019, Accepted 21 Jul 2019, Published online: 30 Aug 2019

References

  • Anderson, T. L., S. J. Masonis, D. S. Covert, N. C. Ahlquist, S. G. Howell, A. D. Clarke, C. S. McNaughton. 2003. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res. 108 (D23):ACE 15-1–ACE 15-19. doi: 10.1029/2002JD003247.
  • Arnott, W. P., H. Moosmüller, C. F. Rogers, T. Jin, and R. Bruch. 1999. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description. Atmos. Environ. 33 (17):2845–2852. doi: 10.1016/S1352-2310(98)00361-6.
  • Arnott, W. P., J. W. Walker, H. Moosmüller, R. A. Elleman, H. H. Jonsson, G. Buzorius, W. C. Conant, R. C. Flagan, and J. H. Seinfeld. 2006. Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbat. J. Geophys. Res. 111 (D5):D05S02. doi: 10.1029/2005JD005964.
  • Baumann, B., B. Kost, H. Groninga, and M. Wolff. 2006. Eigenmode analysis of photoacoustic sensors via finite element method. Rev. Sci. Instrum. 77 (4):044901. doi: 10.1063/1.2186808.
  • Baumann, B., M. Wolff, B. Kost, and H. Groninga. 2007. Finite element calculation of photoacoustic signals. Appl. Opt. 46 (7):1120–1125. doi: 10.1364/AO.46.001120.
  • Bijnen, F. G. C., J. Reuss, and F. J. M. Harren. 1996. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev. Sci. Instrum. 67 (8):2914–2923. doi: 10.1063/1.1147072.
  • Bluvshtein, N., J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich. 2017. Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols. Atmos. Meas. Tech. 10 (3):1203–1213. doi: 10.5194/amt-10-1203-2017.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and intercomparison of Filter-Based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30 (6):582–600. doi: 10.1080/027868299304435.
  • Brand, C., A. Winkler, P. Hess, A. Miklós, Z. Bozóki, and J. Sneider. 1995. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C(2)H(4). Appl. Opt. 34 (18):3257–3266. doi: 10.1364/AO.34.003257.
  • Cappa, C. D., D. A. Lack, J. B. Burkholder, and A. R. Ravishankara. 2008. Bias in Filter-Based aerosol light absorption measurements due to organic aerosol loading: Evidence from laboratory measurements. Aerosol Sci. Technol. 42 (12):1022–1032. doi: 10.1080/02786820802389285.
  • COMSOL User’s Guide. 2016. Acoustics Module User’s Guide COMSOL Multiphysics 5.2a. COMSOL.
  • Cotterell, M. I., A. J. Orr-Ewing, K. Szpek, J. M. Haywood, and J. M. Langridge. 2019a. The impact of bath gas composition on the calibration of photoacoustic spectrometers with ozone at discrete visible wavelengths spanning the Chappuis band. Atmos. Meas. Tech. 12 (4):2371–2385. doi: 10.5194/amt-12-2371-2019.
  • Cotterell, M. I., T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2016. Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy. Aerosol Sci. Technol. 50 (10):1077–1095. doi: 10.1080/02786826.2016.1219691.
  • Cotterell, M. I., G. P. Ward, A. P. Hibbins, J. M. Haywood, A. Wilson, and J. M. Langridge. 2019b. Optimizing the performance of aerosol photoacoustic cells using a finite element model. Part 2: Application to a two-resonator cell. Aerosol Sci. Technol. doi: 10.1080/02786826.2019.1648749.
  • Cotterell, M. I., R. E. Willoughby, B. R. Bzdek, A. J. Orr-Ewing, and J. P. Reid. 2017. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles. Atmos. Chem. Phys. 17 (16):9837–9851. doi: 10.5194/acp-17-9837-2017.
  • Cremer, J. W., P. A. Covert, E. A. Parmentier, and R. Signorell. 2017. Direct measurement of photoacoustic signal sensitivity to aerosol particle size. J. Phys. Chem. Lett. 8 (14):3398–3403. doi: 10.1021/acs.jpclett.7b01288.
  • Cremer, J. W., K. M. Thaler, C. Haisch, and R. Signorell. 2016. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun. 7 (1):10941.
  • Davies, N. W., M. I. Cotterell, C. Fox, K. Szpek, J. M. Haywood, and J. M. Langridge. 2018. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone. Atmos. Meas. Tech. 11 (4):2313–2324. doi: 10.5194/amt-11-2313-2018.
  • Davies, N. W., C. Fox, K. Szpek, M. I. Cotterell, J. W. Taylor, J. D. Allan, P. I. Williams, J. Trembath, J. M. Haywood, and J. M. Langridge. 2019. Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmos. Meas. Tech. 12 (6):3417–3434. doi: 10.5194/amt-12-3417-2019.
  • Diveky, M. E., S. Roy, J. W. Cremer, G. David, and R. Signorell. 2019. Assessing relative humidity dependent photoacoustics to retrieve mass accommodation coefficients of single optically trapped aerosol particles. Phys. Chem. Chem. Phys. 21 (9):4721–4731. doi: 10.1039/C8CP06980H.
  • Fischer, D., and G. D. Smith. 2018a. A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption. Aerosol Sci. Technol. 52 (4):393–406. doi: 10.1080/02786826.2017.1413231.
  • Fischer, D., and G. D. Smith. 2018b. Can ozone be used to calibrate aerosol photoacoustic spectrometers?. Atmos. Meas. Tech. 11 (12):6419–6427. doi: 10.5194/amt-11-6419-2018.
  • Foster, K., R. Pokhrel, M. Burkhart, and S. Murphy. 2019. A novel approach to calibrating a photoacoustic absorption spectrometer using polydisperse absorbing aerosol. Atmos. Meas. Tech. 12 (6):3351–3363. doi: 10.5194/amt-12-3351-2019.
  • Haisch, C., P. Menzenbach, H. Bladt, and R. Niessner. 2012. A wide spectral range photoacoustic aerosol absorption spectrometer. Anal. Chem. 84 (21):8941–8945. doi: 10.1021/ac302194u.
  • Haywood, J., and O. Boucher. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38 (4):513–543. doi: 10.1029/1999RG000078.
  • Haywood, J. M., and K. P. Shine. 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 22 (5):603. doi: 10.1029/95GL00075.
  • Intergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013 The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, 1535. Cambridge: Cambridge University Press.
  • Krämer, L., Z. Bozoki, and R. Niessner. 2001. Characterisation of a mobile photoacoustic sensor for atmospheric black carbon monitoring. Anal. Sci. 17:s563.
  • Lack, D. A., C. D. Cappa, D. S. Covert, T. Baynard, P. Massoli, B. Sierau, T. S. Bates, P. K. Quinn, E. R. Lovejoy, and A. R. Ravishankara. 2008. Bias in filter-based aerosol light absorption measurements due to organic aerosol loading: Evidence from ambient measurements. Aerosol Sci. Technol. 42 (12):1033–1041. doi: 10.1080/02786820802389277.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 40 (9):697–708. doi: 10.1080/02786820600803917.
  • Lack, D. A., M. S. Richardson, D. Law, J. M. Langridge, C. D. Cappa, R. J. McLaughlin, and D. M. Murphy. 2012. Aircraft instrument for comprehensive characterization of aerosol optical properties, part 2: Black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy. Aerosol Sci. Technol. 46 (5):555–568. doi: 10.1080/02786826.2011.645955.
  • Lang-Yona, N., A. Abo-Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich. 2010. Interaction of internally mixed aerosols with light. Phys. Chem. Chem. Phys. 12 (1):21–31. doi: 10.1039/b913176k.
  • Langridge, J. M., M. S. Richardson, D. Lack, D. Law, and D. M. Murphy. 2011. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-Dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy. Aerosol Sci. Technol. 45 (11):1305–1318. doi: 10.1080/02786826.2011.592745.
  • Langridge, J. M., M. S. Richardson, D. A. Lack, C. A. Brock, and D. M. Murphy. 2013. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity. Aerosol Sci. Technol. 47 (11):1163–1173. doi: 10.1080/02786826.2013.827324.
  • Lindley, R. E., A. M. Parkes, K. A. Keen, E. D. McNaghten, and A. J. Orr-Ewing. 2007. A sensitivity comparison of three photoacoustic cells containing a single microphone, a differential dual microphone or a cantilever pressure sensor. Appl. Phys. B 86 (4):707–713. doi: 10.1007/s00340-006-2543-0.
  • Massoli, P., D. M. Murphy, D. A. Lack, T. Baynard, C. A. Brock, and E. R. Lovejoy. 2009. Uncertainty in light scattering measurements by TSI nephelometer: Results from laboratory studies and implications for ambient measurements. Aerosol Sci. Technol. 43 (11):1064–1074. doi: 10.1080/02786820903156542.
  • McManus, J. B., P. L. Kebabian, and M. S. Zahniser. 1995. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt. 34 (18):3336. doi: 10.1364/AO.34.003336.
  • Miklós, A., P. Hess, and Z. Bozóki. 2001. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 72 (4):1937–1955. doi: 10.1063/1.1353198.
  • Miklós, A., and A. Lörincz. 1989. Windowless resonant acoustic chamber for laser-photoacoustic applications. Appl. Phys. B 48:213–218.
  • Miles, R. E. H., S. Rudić, A. J. Orr-Ewing, and J. P. Reid. 2011. Sources of error and uncertainty in the use of cavity ring down spectroscopy to measure aerosol optical properties. Aerosol Sci. Technol. 45 (11):1360–1375. doi: 10.1080/02786826.2011.596170.
  • Nägele, M., and M. W. Sigrist. 2000. Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing. Appl. Phys. B 70 (6):895–901. doi: 10.1007/PL00021151.
  • Parvitte, B., C. Risser, R. Vallon, and V. Zéninari. 2013. Quantitative simulation of photoacoustic signals using finite element modelling software. Appl. Phys. B 111 (3):383–389.
  • Peers, F., P. Francis, C. Fox, S. J. Abel, K. Szpek, M. I. Cotterell, N. W. Davies, J. M. Langridge, K. G. Meyer, S. E. Platnick, and J. M. Haywood. 2019. Observation of absorbing aerosols above clouds over the South- East Atlantic ocean from the geostationary satellite SEVIRI Part 1: Method description and sensitivity. Atmos. Chem. Phys. 19:9595–9611.
  • Risser, C., B. Parvitte, R. Vallon, and V. Zeninari. 2015. Optimization and complete characterization of a photoacoustic gas detector. Appl. Phys. B 118 (2):319–326. doi: 10.1007/s00340-014-5988-6.
  • Rosencwaig, A. 1980. Photoacoustics and photoacoustic spectroscopy. Chichester: Wiley.
  • Sadiek, I., T. Mikkonen, M. Vainio, J. Toivonen, and A. Foltynowicz. 2018. Optical frequency comb photoacoustic spectroscopy. Phys. Chem. Chem. Phys. 20 (44):27849–27855. doi: 10.1039/c8cp05666h.
  • Schäfer, S., A. Miklós, and P. Hess. 1997. Quantitative signal analysis in pulsed resonant photoacoustics. Appl. Opt. 36 (15):3202–3211. doi: 10.1364/AO.36.003202.
  • Sedlacek, A., and J. Lee. 2007. Photothermal interferometric aerosol absorption spectrometry. Aerosol Sci. Technol. 41 (12):1089–1101. doi: 10.1080/02786820701697812.
  • Sharma, N., I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos. Meas. Tech. 6 (12):3501–3513. doi: 10.5194/amt-6-3501-2013.
  • Stier, P., J. H. Seinfeld, S. Kinne, and O. Boucher. 2007. Aerosol absorption and radiative forcing. Atmos. Chem. Phys. 7 (19):5237–5261. doi: 10.5194/acp-7-5237-2007.
  • Zhang, S.-D., C. Sun, F.-X. Sun, and X.-L. Xia. 2017. Spectral properties of an UV fused silica within 0.8 to 5 µm at elevated temperatures. Infrared Phys. Technol. 85:293–299. doi: 10.1016/j.infrared.2017.07.014.