2,480
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Review of sub-3 nm condensation particle counters, calibrations, and cluster generation methods

&
Pages 1277-1310 | Received 12 Apr 2019, Accepted 05 Aug 2019, Published online: 26 Aug 2019

References

  • Adachi, M., K. Okuyama, and J. H. Seinfeld. 1992. Experimental studies on ion-induced nucleation. J. Aerosol Sci. 23 (4):327–337. doi:10.1016/0021-8502(92)90002-D.
  • Agarwal, J. K., and G. J. Sem. 1980. Continuous flow, single-particle-counting condensation nucleus counter. J. Aerosol Sci. 11 (4):343–357. doi:10.1016/0021-8502(80)90042-7.
  • Ahn, K. H., and B. Y. H. Liu. 1990a. Particle activation and droplet growth-processes in condensation nucleus counter.1. Theoretical background. J. Aerosol Sci. 21 (2):249–261. doi:10.1016/0021-8502(90)90008-L.
  • Ahn, K. H., and B. Y. H. Liu. 1990b. Particle activation and droplet growth-processes in condensation nucleus counter.2. Experimental-study. J. Aerosol Sci. 21 (2):263–275. doi:10.1016/0021-8502(90)90009-M.
  • Ahonen, L., J. Kangasluoma, K. Lehtipalo, H. Vehkamaki, T. Petäjä, and M. Kulmala. 2019. Characterization of the effects caused by sample air humidity to the performance of a diethylene glycol based particle size magnifier. in Preparation.
  • Ahonen, L. R., J. Kangasluoma, J. Lammi, K. Lehtipalo, K. Hameri, T. Petaja, and M. Kulmala. 2017. First measurements of the number size distribution of 1–2 nm aerosol particles released from manufacturing processes in a cleanroom environment. Aerosol Sci. Technol. 51 (6):685–693. doi:10.1080/02786826.2017.1292347.
  • Aitken, J. 1880a. On dusts, fogs and clouds. Nature 384–385. doi:10.1038/023384a0.
  • Aitken, J. 1880b. On dusts, fogs and clouds. Proc. R. Soc. 11:11–14. doi:10.1017/S0370164600046666.
  • Alanen, J., E. Saukko, K. Lehtoranta, T. Murtonen, H. Timonen, R. Hillamo, P. Karjalainen, H. Kuuluvainen, J. Harra, J. Keskinen, and T. Ronkko. 2015. The formation and physical properties of the particle emissions from a natural gas engine. Fuel 162:155–161. doi:10.1016/j.fuel.2015.09.003.
  • Amo-Gonzalez, M., and S. Perez. 2018. Planar differential mobility analyzer with a resolving power of 110. Anal. Chem. 90:6735–6741. doi:10.1021/acs.analchem.8b00579.
  • Asbach, C., A. Schmitz, F. Schmidt, C. Monz, and A. M. Todea. 2017. Intercomparison of a personal CPC and different conventional CPCs. Aerosol Air Qual. Res. 17 (5):1132–1141. doi:10.4209/aaqr.2016.10.0460.
  • Attoui, M. 2018. Activation of Sub 2 nm singly charged particles with butanol vapors in a boosted 3776 TSI CPC. J. Aerosol Sci. 126:47–57. doi:10.1016/j.jaerosci.2018.08.005.
  • Baltzer, S., S. Onel, M. Weiss, and M. Seipenbusch. 2014. Counting efficiency measurements for a new condensation particle counter. J. Aerosol Sci. 70:11–14. doi:10.1016/j.jaerosci.2013.12.011.
  • Barmpounis, K., A. Ranjithkumar, A. Schmidt-Ott, M. Attoui, and G. Biskos. 2018. Enhancing the detection efficiency of condensation particle counters for Sub-2 nm particles. J. Aerosol Sci. 117:44–53. doi:10.1016/j.jaerosci.2017.12.005.
  • Bartz, H., H. Fissan, C. Helsper, Y. Kousaka, K. Okuyama, N. Fukushima, P. B. Keady, S. Kerrigan, S. A. Fruin, P. H. Mcmurry, D. Y. H. Pui, and M. R. Stolzenburg. 1985. Response characteristics for 4 different condensation nucleus counters to particles in the 3-50 nm diameter range. J. Aerosol Sci. 16 (5):443–456. doi:10.1016/0021-8502(85)90056-4.
  • Boies, A. M., P. Y. Lei, S. Calder, W. G. Shin, and S. L. Girshick. 2011. Hot-wire synthesis of gold nanoparticles. Aerosol Sci. Technol. 45 (5):654–663. doi:10.1080/02786826.2010.551145.
  • Bricard, J., P. Delattre, G. Madelaine, and M. Pourprix. 1976. Detection of ultra-fine particles by means of a continuous flux condensation nuclei counter. in Fine Particles. Academic Press, New York, pp. 565–580.
  • Brockmann, J. E. 1981. Coagulation and deposition of ultrafine aerosols in turbulent pipe flow. Ph.D. Thesis, Mechanical Engineering Department, University of Minnesota, Minneapolis.
  • Brunelli, N. A., R. C. Flagan, and K. P. Giapis. 2009. Radial differential mobility analyzer for one nanometer particle classification. Aerosol Sci. Technol. 43 (1):53–59. doi:10.1080/02786820802464302.
  • Buckley, D. T., and C. J. Hogan. 2017. Determination of the transfer function of an atmospheric pressure drift tube ion mobility spectrometer for nanoparticle measurements. Analyst 142 (10):1800–1812. doi:10.1039/C7AN00328E.
  • Cai, R., D. R. Chen, J. Hao, and J. Jiang. 2017. A miniature cylindrical differential mobility analyzer for Sub-3 nm particle sizing. J. Aerosol Sci. 106:111–119. doi:10.1016/j.jaerosci.2017.01.004.
  • Cai, R., S. Mirme, J. Jiang, and J. Kangasluoma. 2019. Parameters to determine the optimum performance of electrical mobility spectrometers for measurement of particle size distributions down to the cluster size. J. Aerosol Sci. 127:102–115. doi:10.1016/j.jaerosci.2018.11.002.
  • Cai, R., D. Yang, L. R. Ahonen, L. Shi, F. Korhonen, Y. Ma, J. Hao, T. Petäjä, J. Zheng, J. Kangasluoma, and J. Jiang. 2018. Data inversion methods to determine Sub-3 nm aerosol size distributions using the particle size magnifier. Atmos. Meas. Tech. 11 (7):4477–4491. doi:10.5194/amt-11-4477-2018.
  • Cai, R. L., D. S. Yang, Y. Y. Fu, X. Wang, X. X. Li, Y. Ma, J. M. Hao, J. Zheng, and J. K. Jiang. 2017. Aerosol surface area concentration: A governing factor in new particle formation in beijing. Atmos. Chem. Phys. 17 (20):12327–12340. doi:10.5194/acp-17-12327-2017.
  • Carbone, F., M. Attoui, and A. Gomez. 2016. Challenges of measuring nascent soot in flames as evidenced by high-resolution differential mobility analysis. Aerosol Sci. Technol. 50 (7):740–757. doi:10.1080/02786826.2016.1179715.
  • Cloupeau, M., and B. Prunet-Foch. 1994. Electrohydrodynamic spraying functioning modes – A critical-review. J. Aerosol Sci. 25 (6):1021–1036. doi:10.1016/0021-8502(94)90199-6.
  • Collings, N., K. Rongchai, and J. P. R. Symonds. 2014. A condensation particle counter insensitive to volatile particles. J. Aerosol Sci. 73:27–38. doi:10.1016/j.jaerosci.2014.03.003.
  • Coulier, P. J. 1875a. Note sur une nouvelle propriete de l’air. J. de Pharmacie et de Chimie, Paris Ser. 4 (22):165–173.
  • Coulier, P. J. 1875b. Note sur une nouvelle propriete de l’air. J. de Pharmacie et de Chimie, Paris Ser. 4 (22):254–255.
  • Domaschke M., C. Lübbert, and W. Peukert. 2019. Analysis of ultrafine metal oxide particles in aerosols using mobility-resolved time-of-flight mass spectrometry. J. Aerosol Sci. doi:10.1016/j.jaerosci.2019.105438.
  • El Golli, S., G. Madelaine, P. Y. Turpin, and J. Bricard. 1975. Recent advances in photoelectric aerosol measurements. Water Air Soil Poll. 5 (1):11–38. doi:10.1007/BF00431576.
  • Enroth, J., J. Kangasluoma, F. Korhonen, S. Hering, D. Picard, G. Lewis, M. Attoui, and T. Petaja. 2018. On the time response determination of condensation particle counters. Aerosol Sci. Technol. 52 (7):778–787. doi:10.1080/02786826.2018.1460458.
  • Fang, J. X., Y. Wang, J. Kangasluoma, M. Attoui, H. Junninen, M. Kulmala, T. Petaja, and P. Biswas. 2017. Cluster formation mechanisms of titanium dioxide during combustion synthesis: Observation with an api-tof. Aerosol Sci. Technol. 51 (9):1071–1081. doi:10.1080/02786826.2017.1331028.
  • Fang, J. X., Y. Wang, J. Kangasluoma, M. Attoui, H. Junninen, M. Kulmala, T. Petaja, and P. Biswas. 2018. The initial stages of multicomponent particle formation during the gas phase combustion synthesis of mixed sio2/tio2. Aerosol Sci. Technol. 52 (3):277–286. doi:10.1080/02786826.2017.1399197.
  • Feng, J. C., L. Y. Huang, L. Ludvigsson, M. E. Messing, A. Maisser, G. Biskos, and A. Schmidt-Ott. 2016. General approach to the evolution of singlet nanoparticles from a rapidly quenched point source. J. Phys. Chem. C 120 (1):621–630. doi:10.1021/acs.jpcc.5b06503.
  • Fernandéz de la Mora, J. 2011. Heterogeneous nucleation with finite activation energy and perfect wetting: Capillary theory versus experiments with nanometer particles, and extrapolations on the smallest detectable nucleus. Aerosol Sci. Technol. 45 (4):543–554. doi:10.1080/02786826.2010.550341.
  • Fernandéz de la Mora, J. 2017. Expanded flow rate range of high-resolution nanodmas via improved sample flow injection at the aerosol inlet slit. J. Aerosol Sci. 113:265–275. doi:10.1016/j.jaerosci.2017.07.020.
  • Fernandez de la Mora, J., and C. Barrios-Collado. 2017. A bipolar electrospray source of singly charged salt clusters of precisely controlled composition. Aerosol Sci. Technol. 51 (6):778–786. doi:10.1080/02786826.2017.1302070.
  • Fernandéz de la Mora, J., and J. Kozlowski. 2013. Hand-held differential mobility analyzers of high resolution for 1–30 nm particles: Design and fabrication considerations. J. Aerosol Sci. 57:45–53. doi:10.1016/j.jaerosci.2012.10.009.
  • Flagan, R. 1999. On differential mobility analyzer resolution. Aerosol Sci. Technol. 30 (6):556–570. doi:10.1080/027868299304417.
  • Fletcher, N. H. 1958. Size effect in heterogeneous nucleation. J. Chem. Phys. 29 (3):572–576. doi:10.1063/1.1744540.
  • Fu, Y., M. Xue, R. Cai, J. Kangasluoma, and J. Jiang. 2019. Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line. Aerosol Sci. Technol. 53 (7):793–801. doi:10.1080/02786826.2019.1608354.
  • Gamero-Castano, M., and J. Fernandéz de la Mora. 2000. A condensation nucleus counter (CNC) sensitive to singly charged Sub-nanometer particles. J. Aerosol Sci. 31:757–772. doi:10.1016/S0021-8502(99)00555-8.
  • Gamero-Castano, M., and J. Fernandéz de la Mora. 2002. Ion-induced nucleation: Measurement of the effect of embryo's size and charge state on the critical supersaturation. J. Chem. Phys. 117:3345–3353. doi:10.1063/1.1492279.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, and A. Eiguren-Fernandez. 2018. A magic concept for self-sustained, water based, ultrafine particle counting. Aerosol. Sci. Tech. 53 (1):1–32.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, A. Eiguren-Fernandez, N. M. Kreisberg, C. Kuang, and M. Attoui. 2017. Detection near 1-nm with a laminar-flow, water-based condensation particle counter. Aerosol Sci. Technol. 51:00.
  • Hering, S. V., S. R. Spielman, and G. S. Lewis. 2014. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48 (4):401–408. doi:10.1080/02786826.2014.881460.
  • Hering, S. V., and M. R. Stolzenburg. 2005. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 39 (5):428–436. doi:10.1080/027868290953416.
  • Hering, S. V., M. R. Stolzenburg, F. R. Quant, D. R. Oberreit, and P. B. Keady. 2005. A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci. Technol. 39 (7):659–672. doi:10.1080/02786820500182123.
  • Hietikko, R., H. Kuuluvainen, R. M. Harrison, H. Portin, H. Timonen, J. V. Niemi, and T. Ronkko. 2018. Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon. Atmos. Environ. 189:98–106. doi:10.1016/j.atmosenv.2018.06.031.
  • Hogan, C. J., and J. Fernandez de la Mora. 2009. Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops. Phys. Chem. Chem. Phys. 11 (36):8079–8090. doi:10.1039/b904022f.
  • Hwang, I., and H. K. Ahn. 2017. Performance evaluation of conventional type conductive cooling continuous flow compact water-based CPC (HY-WCPC). J. Aerosol Sci. 113:12–19. doi:10.1016/j.jaerosci.2017.07.007.
  • Iida, K., M. R. Stolzenburg, and P. H. McMurry. 2009. Effect of working fluid on Sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci. Technol. 43 (1):81–96. doi:10.1080/02786820802488194.
  • Iida, K., M. R. Stolzenburg, P. H. McMurry, J. N. Smith, F. R. Quant, D. R. Oberreit, P. B. Keady, A. Eiguren-Fernandez, G. S. Lewis, N. M. Kreisberg, and S. V. Hering. 2008. An ultrafine, water-based condensation particle counter and its evaluation under field conditions. Aerosol Sci. Technol. 42 (10):862–871. doi:10.1080/02786820802339579.
  • Ito, E., T. Seto, Y. Otani, and H. Sakurai. 2011. Nucleation of ethylene glycol vapor and growth of Sub-10-nm particles in nanoparticle size magnifier. Aerosol Sci. Technol. 45 (10):1250–1259. doi:10.1080/02786826.2011.589481.
  • Jiang, J. K., M. Attoui, M. Heim, N. A. Brunelli, P. H. McMurry, G. Kasper, R. C. Flagan, K. Giapis, and G. Mouret. 2011a. Transfer functions and penetrations of five differential mobility analyzers for Sub-2 nm particle classification. Aerosol Sci. Technol. 45 (4):480–492. doi:10.1080/02786826.2010.546819.
  • Jiang, J. K., M. D. Chen, C. A. Kuang, M. Attoui, and P. H. McMurry. 2011b. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Sci. Technol. 45 (4):510–521. doi:10.1080/02786826.2010.547538.
  • Jiang, J. K., J. Zhao, M. D. Chen, F. L. Eisele, J. Scheckman, B. J. Williams, C. A. Kuang, and P. H. McMurry. 2011c. First measurements of neutral atmospheric cluster and 1-2 nm particle number size distributions during nucleation events. Aerosol Sci. Technol. 45 (4):ii. doi:10.1080/02786826.2010.546817.
  • Kane, D., G. M. Daly, and S. El-Shall. 1995. Condensation of supersaturated vapors on benzene ions generated by resonant two-photon ionization: A new technique for ion nucleation. J. Phys. Chem. 99 (20):7867–7870. doi:10.1021/j100020a006.
  • Kangasluoma, J., L. Ahonen, M. Attoui, H. Vuollekoski, M. Kulmala, and T. Petaja. 2015a. Sub-3nm particle detection with commercial TSI 3772 and airmodus a20 fine condensation particle counters. Aerosol Sci. Technol. 49 (8):674–681. doi:10.1080/02786826.2015.1058481.
  • Kangasluoma, J., L. R. Ahonen, T. Laurila, R. Cai, J. Enroth, S. Mazon, F. Korhonen, P. Aalto, M. Kulmala, M. Attoui, and T. Petäjä. 2018. Laboratory verification of a new high flow differential mobility particle sizer, and field measurements in hyytiälä. J. Aerosol Sci. 124:1–9. doi:10.1016/j.jaerosci.2018.06.009.
  • Kangasluoma, J., M. Attoui, H. Junninen, K. Lehtipalo, A. Samodurov, F. Korhonen, N. Sarnela, A. Schmidt-Ott, D. Worsnop, M. Kulmala, and T. Petäjä. 2015b. Sizing of neutral Sub 3 nm tungsten oxide clusters using airmodus particle size magnifier. J. Aerosol Sci. 87:53–62. doi:10.1016/j.jaerosci.2015.05.007.
  • Kangasluoma, J., M. Attoui, F. Korhonen, L. Ahonen, E. Siivola, and T. Petaja. 2016a. Characterization of a Herrmann-type high-resolution differential mobility analyzer. Aerosol Sci. Technol. 50 (3):222–229. doi:10.1080/02786826.2016.1142065.
  • Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen, M. Attoui, J. Mikkila, K. Lehtipalo, J. Vanhanen, M. Kulmala, and T. Petaja. 2016b. Operation of the airmodus a11 nano condensation nucleus counter at various inlet pressures and various operation temperatures, and design of a new inlet system. Atmos. Meas. Tech. 9 (7):2977–2988. doi:10.5194/amt-9-2977-2016.
  • Kangasluoma, J., S. Hering, D. Picard, G. Lewis, J. Enroth, F. Korhonen, M. Kulmala, K. Sellegri, M. Attoui, and T. Petaja. 2017. Characterization of three new condensation particle counters for Sub-3 nm particle detection during the Helsinki CPC workshop: The ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010. Atmos. Meas. Tech. 10 (6):2271–2281. doi:10.5194/amt-10-2271-2017.
  • Kangasluoma, J., H. Junninen, K. Lehtipalo, J. Mikkila, J. Vanhanen, M. Attoui, M. Sipila, D. Worsnop, M. Kulmala, and T. Petaja. 2013. Remarks on ion generation for CPC detection efficiency studies in Sub-3-nm size range. Aerosol Sci. Technol. 47 (5):556–563. doi:10.1080/02786826.2013.773393.
  • Kangasluoma, J., and J. Kontkanen. 2017. On the sources of uncertainty in the Sub-3 nm particle concentration measurement. J. Aerosol Sci. 112:34–51. doi:10.1016/j.jaerosci.2017.07.002.
  • Kangasluoma, J., C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petaja. 2014. Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmos. Meas. Tech. 7 (3):689–700. doi:10.5194/amt-7-689-2014.
  • Kangasluoma, J., A. Samodurov, M. Attoui, A. Franchin, H. Junninen, F. Korhonen, T. Kurten, H. Vehkamaki, M. Sipila, K. Lehtipalo, D. R. Worsnop, T. Petaja, and M. Kulmala. 2016c. Heterogeneous nucleation onto ions and neutralized ions: Insights into sign-preference. J. Phys. Chem. C 120 (13):7444–7450. doi:10.1021/acs.jpcc.6b01779.
  • Kebarle, P., and U. H. Verkerk. 2009. Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 28 (6):898–917. doi:10.1002/mas.20247.
  • Kesten, J., A. Reineking, and J. Porstendorfer. 1991. Calibration of a TSI model 3025 ultrafine condensation particle counter. Aerosol Sci. Technol. 15 (2):107–111. doi:10.1080/02786829108959517.
  • Kim, S., K. Iida, Y. Kuromiya, T. Seto, H. Higashi, and Y. Otani. 2015. Effect of nucleation temperature on detecting molecular ions and charged nanoparticles with a diethylene glycol-based particle size magnifier. Aerosol Sci. Technol. 49 (1):35–44. doi:10.1080/02786826.2014.989954.
  • Kim, C. S., K. Okuyama, and M. Shimada. 2002. Performance of a mixing-type CNC for nanoparticles at low-pressure conditions. J. Aerosol Sci. 33 (10):1389–1404. doi:10.1016/S0021-8502(02)00092-7.
  • Kim, C. S., K. Okuyama, and J. F. de la Mora. 2003. Performance evaluation of an improved particle size magnifier (PSM) for single nanoparticle detection. Aerosol Sci. Technol. 37 (10):791–803. doi:10.1080/02786820390222199.
  • Kirkby, J., J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagne, L. Ickes, A. Kurten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R. C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E. R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petäjä, R. Schnitzhofer, J. H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tome, J. Vanhanen, Y. Viisanen, A. Vrtala, P. E. Wagner, H. Walther, E. Weingartner, H. Wex, P. M. Winkler, K. S. Carslaw, D. R. Worsnop, U. Baltensperger, and M. Kulmala. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476 (7361):429–U477. doi:10.1038/nature10343.
  • Kirkby, J., J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, J. Trostl, T. Nieminen, I. K. Ortega, R. Wagner, A. Adamov, A. Amorim, A. K. Bernhammer, F. Bianchi, M. Breitenlechner, S. Brilke, X. M. Chen, J. Craven, A. Dias, S. Ehrhart, R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, J. Hakala, C. R. Hoyle, T. Jokinen, H. Junninen, J. Kangasluoma, J. Kim, M. Krapf, A. Kurten, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, U. Molteni, A. Onnela, O. Perakyla, F. Piel, T. Petaja, A. P. Praplan, K. Pringle, A. Rap, N. A. D. Richards, I. Riipinen, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, C. E. Scott, J. H. Seinfeld, M. Sipila, G. Steiner, Y. Stozhkov, F. Stratmann, A. Tome, A. Virtanen, A. L. Vogel, A. C. Wagner, P. E. Wagner, E. Weingartner, D. Wimmer, P. M. Winkler, P. L. Ye, X. Zhang, A. Hansel, J. Dommen, N. M. Donahue, D. R. Worsnop, U. Baltensperger, M. Kulmala, K. S. Carslaw, and J. Curtius. 2016. Ion-induced nucleation of pure biogenic particles. Nature 533 (7604):521. doi:10.1038/nature17953.
  • Kogan, Y. I., and Z. A. Burnasheva. 1960. Growth and measurement of condensation nuclei in a continuous stream. Zhurnal Fizicheskoi Khimii 34:2630–2639.
  • Kontkanen, J., K. Lehtipalo, L. Ahonen, J. Kangasluoma, H. E. Manninen, J. Hakala, C. Rose, K. Sellegri, S. Xiao, L. Wang, X. M. Qi, W. Nie, A. J. Ding, H. Yu, S. Lee, V. M. Kerminen, T. Petaja, and M. Kulmala. 2017. Measurements of Sub-3nm particles using a particle size magnifier in different environments: From clean Mountain top to polluted megacities. Atmos. Chem. Phys. 17 (3):2163–2187. doi:10.5194/acp-17-2163-2017.
  • Kousaka, Y., T. Niida, K. Okuyama, and H. Tanaka. 1982. Development of a mixing type condensation nucleus counter. J. Aerosol Sci. 13 (3):231–240. doi:10.1016/0021-8502(82)90064-7.
  • Kuang, C. 2018. A diethylene glycol condensation particle counter for rapid sizing of Sub-3nm atmospheric clusters. Aerosol Sci. Technol. 10:1112–1119. doi:10.1080/02786826.2018.1481279.
  • Kuang, C., M. Chen, J. Zhao, J. Smith, P. H. McMurry, and J. Wang. 2012a. Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmos. Chem. Phys. 12 (7):3573–3589. doi:10.5194/acp-12-3573-2012.
  • Kuang, C. A., M. D. Chen, P. H. McMurry, and J. Wang. 2012b. Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei. Aerosol Sci. Technol. 46 (3):309–315. doi:10.1080/02786826.2011.626815.
  • Kulmala, M., J. Kontkanen, H. Junninen, K. Lehtipalo, H. E. Manninen, T. Nieminen, T. Petaja, M. Sipila, S. Schobesberger, P. Rantala, A. Franchin, T. Jokinen, E. Jarvinen, M. Aijala, J. Kangasluoma, J. Hakala, P. P. Aalto, P. Paasonen, J. Mikkila, J. Vanhanen, J. Aalto, H. Hakola, U. Makkonen, T. Ruuskanen, R. L. Mauldin, J. Duplissy, H. Vehkamaki, J. Back, A. Kortelainen, I. Riipinen, T. Kurten, M. V. Johnston, J. N. Smith, M. Ehn, T. F. Mentel, K. E. J. Lehtinen, A. Laaksonen, V. M. Kerminen, and D. R. Worsnop. 2013. Direct observations of atmospheric aerosol nucleation. Science 339 (6122):943–946. doi:10.1126/science.1227385.
  • Kulmala, M., G. Mordas, T. Petaja, T. Gronholm, P. P. Aalto, H. Vehkamaki, A. I. Hienola, E. Herrmann, M. Sipila, I. Riipinen, H. E. Manninen, K. Hameri, F. Stratmann, M. Bilde, P. M. Winkler, W. Birmili, and P. E. Wagner. 2007. The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. J. Aerosol Sci. 38 (3):289–304. doi:10.1016/j.jaerosci.2006.11.008.
  • Kupc, A., O. Bischof, T. Tritscher, M. Beeston, T. Krinke, and P. E. Wagner. 2013a. Laboratory characterization of a new nano-water-based CPC 3788 and performance comparison to an ultrafine butanol-based CPC 3776. Aerosol Sci. Technol. 47 (2):183–191. doi:10.1080/02786826.2012.738317.
  • Kupc, A., P. M. Winkler, A. Vrtala, and P. Wagner. 2013b. Unusual temperature dependence of heterogeneous nucleation of water vapor on ag particles. Aerosol Sci. Technol. 47 (9):I–Iv. doi:10.1080/02786826.2013.810330.
  • Kurten, A., J. Curtius, B. Nillius, and S. Borrmann. 2005. Characterization of an automated, water-based expansion condensation nucleus counter for ultrafine particles. Aerosol Sci. Technol. 39:1174–1183. doi:10.1080/02786820500431355.
  • Kwon, H. B., S. H. Yoo, U. S. Hong, K. Kim, J. Han, M. K. Kim, D. H. Kang, J. Hwang, and Y. J. Kim. 2019. Mems-based condensation particle growth chip for optically measuring the airborne nanoparticle concentration. Lab Chip 19 (8):1471. doi:10.1039/C9LC00035F.
  • Lehtipalo, K., M. Sipila, I. Riipinen, T. Nieminen, and M. Kulmala. 2009. Analysis of atmospheric neutral and charged molecular clusters in boreal Forest using pulse-height CPC. Atmos. Chem. Phys. 9 (12):4177–4184. doi:10.5194/acp-9-4177-2009.
  • Lewis, G. S., and S. Hering. 2013. Minimizing concentration effects in water-based, laminar-flow condensation particle counters. Aerosol Sci. Technol. 47 (6):645–654. doi:10.1080/02786826.2013.779629.
  • Li, C. X., and C. J. Hogan. 2017. Vapor specific extents of uptake by nanometer scale charged particles. Aerosol Sci. Technol. 51 (5):653–664. doi:10.1080/02786826.2017.1288285.
  • Liu, B. Y. H., and C. S. Kim. 1977. On the counting efficiency of condensation nuclei counters. Atmos. Environ. 11 (11):1097–1100. doi:10.1016/0004-6981(77)90240-2.
  • Liu, B. Y. H., and D. Y. H. Pui. 1974. Submicron aerosol standard and primary, absolute calibration of condensation nuclei counter. J. Colloid Interface Sci. 47 (1):155–171. doi:10.1016/0021-9797(74)90090-3.
  • Liu, W., S. L. Kaufman, B. L. Osmondson, G. J. Sem, F. R. Quant, and D. R. Oberreit. 2006. Water-based condensation particle counters for environmental monitoring of ultrafine particles. J. Air Waste Manage 56 (4):444–455. doi:10.1080/10473289.2006.10464520.
  • Madelaine, G., and Y. Metayer. 1980. Note. J. Aerosol Sci. 11 (4):358. doi:10.1016/0021-8502(80)90043-9.
  • Magnusson, L. E., J. A. Koropchak, M. P. Anisimov, V. M. Poznjakovskiy, and J. F. de la Mora. 2003. Correlations for vapor nucleating critical embryo parameters. J. Phys. Chem. Ref. Data 32 (4):1387–1410. doi:10.1063/1.1555590.
  • Maisser, A., K. Barmpounis, M. B. Attoui, G. Biskos, and A. Schmidt-Ott. 2015. Atomic cluster generation with an atmospheric pressure spark discharge generator. Aerosol Sci. Technol. 49 (10):886–894. doi:10.1080/02786826.2015.1080812.
  • Maißer, A., J. M. Thomas, C. Larriba-Andaluz, S. He, and C. J. Hogan. 2015. The mass–mobility distributions of ions produced by a po-210 source in air. J. Aerosol Sci. 90:36–50. doi:10.1016/j.jaerosci.2015.08.004.
  • Marti, J. J., R. J. Weber, M. T. Saros, J. G. Vasiliou, and P. H. McMurry. 1996. Modification of the TSI 3025 condensation particle counter for pulse height analysis. Aerosol Sci. Technol. 25 (2):214–218. doi:10.1080/02786829608965392.
  • Mavliev, R. 2002. Turbulent mixing condensation nucleus counter. Atmos. Res. 62 (3–4):303–314. doi:10.1016/S0169-8095(02)00016-9.
  • Mavliev, R., and H. C. Wang. 2000. Design and performance characteristics of a turbulent mixing condensation nuclei counter. J. Aerosol Sci. 31 (8):933–944. doi:10.1016/S0021-8502(99)00566-2.
  • McDermott, W. T., R. C. Ockovic, and M. R. Stolzenburg. 1991. Counting efficiency of an improved 30-a condensation nucleus counter. Aerosol Sci. Technol. 14 (2):278–287. doi:10.1080/02786829108959490.
  • McMurry, P. H. 2000. The history of condensation nucleus counters. Aerosol Sci. Technol. 33 (4):297–322. doi:10.1080/02786820050121512.
  • Mertes, S., F. Schroder, and A. Wiedensohler. 1995. The particle-detection efficiency curve of the TSI-3010 CPC as a function of the temperature difference between saturator and condenser. Aerosol Sci. Technol. 23 (2):257–261. doi:10.1080/02786829508965310.
  • Metayer, Y., and G. Madelaine. 1980. On the counting efficiency of a continuous flow condensation nuclei counter. Stud. Environ. Sci. 8:273–278.
  • Mordas, G., M. Kulmala, T. Petaja, P. P. AAlto, V. Matulevicius, V. Grigoraitis, V. Ulevicius, V. Grauslys, A. Ukkonen, and K. Hameri. 2005. Design and performance characteristics of a condensation particle counter uf-02proto. Boreal Environ. Res. 10:543–552.
  • Mordas, G., H. E. Manninen, T. Petaja, P. P. Aalto, K. Hameri, and M. Kulmala. 2008. On operation of the ultra-fine water-based CPC TSI3786 and comparison with other TSI models (TSI3776, TSI3772, TSI3025, TSI3010, TSI3007). Aerosol Sci. Technol. 42 (2):152–158. doi:10.1080/02786820701846252.
  • Mordas, G., M. Sipila, and M. Kulmala. 2008. Nanometer particle detection by the condensation particle counter uf-02proto. Aerosol Sci. Technol. 42 (7):521–527. doi:10.1080/02786820802220233.
  • Niesser, R., and C. Helsper. 1985. Application of a multistep condensation nuclei counter as a detector for a particle surface composition. J. Aerosol Sci. 16:201–209. doi:10.1016/0021-8502(85)90026-6.
  • Nolan, P. J., and E. L. Kennan. 1949. Condensation nuclei from hot platinum: Size, coagulation coefficient and charge-distribution. Proc. Roy. Irish Academy. Section A: math. Phys. Sci. 52:171–190.
  • Nosko, O., J. Vanhanen, and U. Olofsson. 2017. Emission of 1.3-10 nm airborne particles from brake materials. Aerosol Sci. Technol. 51 (1):91–96. doi:10.1080/02786826.2016.1255713.
  • O'Dowd, C. D., P. P. Aalto, Y. J. Yoon, and K. Hämeri. 2004. The use of the pulse height analyser ultrafine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition. J. Aerosol Sci. 35:205–216. doi:10.1016/j.jaerosci.2003.08.003.
  • Oberreit, D., V. K. Rawat, C. Larriba-Andaluz, H. Ouyang, P. H. McMurry, and C. J. Hogan. 2015. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry. J. Chem. Phys. 143: 104204. Artn 104204. doi:10.1063/1.4930278.
  • Okuyama, K., Y. Kousaka, and T. Motouchi. 1984. Condensational growth of ultrafine aerosol-particles in a new particle-size magnifier. Aerosol Sci. Technol. 3 (4):353–366. doi:10.1080/02786828408959024.
  • Owen, G. 1903. On the condensation nuclei produced in air and hydrogen by heating a platinum wire. London, Edinburgh, Dublin Philosoph. Mag. J. Sci. 6 (33):306–315. Xxxviii. doi:10.1080/14786440309463021.
  • Pedder, M. A. 1971. Measurement of size and diffusion characteristics of aerosols with particle sizes less than 0.01 mum using Pollak condensation nucleus counter. J. Phys. D Appl. Phys. 4 (4):531. doi:10.1088/0022-3727/4/4/309.
  • Pedder, M. A. 1974. Smallest particles detected by condensation nucleus counters. Atmos. Environ. 8 (10):1061–1062. doi:10.1016/0004-6981(74)90199-1.
  • Peineke, C., M. Attoui, R. Robles, A. C. Reber, S. N. Khanna, and A. Schmidt-Ott. 2009. Production of equal sized atomic clusters by a hot wire. J. Aerosol Sci. 40 (5):423–430. doi:10.1016/j.jaerosci.2008.12.008.
  • Peineke, C., and A. Schmidt-Ott. 2008. Explanation of charged nanoparticle production from hot surfaces. J. Aerosol Sci. 39 (3):244–252. doi:10.1016/j.jaerosci.2007.12.004.
  • Petäjä, T., G. Mordas, H. Manninen, P. P. Aalto, K. Hämeri, and M. Kulmala. 2006. Detection efficiency of a water-based TSI condensation particle counter 3785. Aerosol Sci. Technol. 40 (12):1090–1097. doi:10.1080/02786820600979139.
  • Picard, D., M. Attoui, and K. Sellegri. 2019. B3010: A boosted TSI 3010 CPC for airborne studies. Atmos. Meas. Tech. 12:2531–2543. doi:10.5194/amt-12-2531-2019.
  • Pinterich, T., A. Vrtala, M. Kaltak, J. Kangasluoma, K. Lehtipalo, T. Petaja, P. M. Winkler, M. Kulmala, and P. E. Wagner. 2016. The versatile size analyzing nuclei counter (vSANC). Aerosol Sci. Technol. 50 (9):947–958. doi:10.1080/02786826.2016.1210783.
  • Pollak, L. W., and J. Daly. 1957. A condensation nucleus counter with stereo photomicrograph recording. Geofis. Pura Appl. 36 (1):27–34. doi:10.1007/BF01992989.
  • Porstendörfer, J., H. G. Scheibel, F. G. Pohl, O. Preining, G. Reischl, and P. E. Wagner. 1985. Heterogeneous nucleation of water-vapor on monodispersed ag and NaCl particles with diameters between 6 and 18 nm. Aerosol Sci. Technol. 4 (1):65–79. doi:10.1080/02786828508959039.
  • Rabeony, H., and P. Mirabel. 1987. Experimental study of vapor nucleation on ions. J. Phys. Chem. 91 (7):1815–1818. doi:10.1021/j100291a027.
  • Riipinen, I., H. E. Manninen, T. Yli-Juuti, M. Boy, M. Sipilä, M. Ehn, H. Junninen, T. Petäjä, and M. Kulmala. 2009. Applying the condensation particle counter battery (CPCB) to study the water-affinity of freshly-formed 2-9 nm particles in boreal Forest. Atmos. Chem. Phys. 9 (10):3317–3330. doi:10.5194/acp-9-3317-2009.
  • Romay, F. J., A. M. Collins, W. D. Dick, L. Li, C. W. Fandrey, and B. Y. H. Liu. 2016. Water-based single-flow mixing condensation particle counter. Aerosol Sci. Technol. 50 (12):1320–1326. doi:10.1080/02786826.2016.1222510.
  • Rosell-Llompart, J., I. G. Loscertales, D. Bingham, and J. Fernández de la Mora. 1996. Sizing nanoparticles and ions with a short differential mobility analyzer. J. Aerosol Sci. 27 (5):695–719. doi:10.1016/0021-8502(96)00016-X.
  • Rönkkö, T., H. Kuuluvainen, P. Karjalainen, J. Keskinen, R. Hillamo, J. V. Niemi, L. Pirjola, H. J. Timonen, S. Saarikoski, E. Saukko, A. Jarvinen, H. Silvennoinen, A. Rostedt, M. Olin, J. Yli-Ojanpera, P. Nousiainen, A. Kousa, and M. Dal Maso. 2017. Traffic is a major source of atmospheric nanocluster aerosol. Proc. Natl. Acad. Sci. U. S. A. 114 (29):7549–7554. doi:10.1073/pnas.1700830114.
  • Santos, J. P., E. Hontanon, E. Ramiro, and M. Alonso. 2009. Performance evaluation of a high-resolution parallel-plate differential mobility analyzer. Atmos. Chem. Phys. 9 (7):2419–2429. doi:10.5194/acp-9-2419-2009.
  • Saros, M. T., R. J. Weber, J. J. Marti, and P. H. McMurry. 1996. Ultrafine aerosol measurement using a condensation nucleus counter with pulse height analysis. Aerosol Sci. Technol. 25 (2):200–213. doi:10.1080/02786829608965391.
  • Scheibel, H. G., and J. PorstendöRfer. 1983. Generation of monodisperse Ag-aerosol and NaCl-aerosol with particle diameters between 2-nm and 300-nm. J. Aerosol Sci. 14 (2):113. doi:10.1016/0021-8502(83)90035-6.
  • Scheibel, H. G., and J. Porstendörfer. 1986a. Counting efficiency and detection limit of condensation nuclei counters for submicrometer aerosols. I. Theoretical evaluation of the influence of heterogeneous nucleation and wall losses. J. Colloid Interface Sci. 109 (1):261–273.
  • Scheibel, H. G., and J. Porstendörfer. 1986b. Counting efficiency and detection limit of condensation nuclei counters for submicrometer aerosols. II. Measurements with monodisperse hydrophobic ag and hygroscopic NaCl aerosols with particle diameters between 2 and 100 nm. J. Colloid Interface Sci. 109 (1):275–291. doi:10.1016/0021-9797(86)90302-4.
  • Scheibel, H. G., and J. Porstendörfer. 1986c. Counting efficiency and detection limits of condensation nuclei counters for submicrometer aerosols (Part-I and Part-II) – Reply. J. Colloid Interface Sci. 109:294–294. doi:10.1016/0021-9797(86)90304-8.
  • Seto, T., K. Okuyama, L. de Juan, and J. Fernández de la Mora. 1997. Condensation of supersaturated vapors on monovalent and divalent ions of varying size. J. Phys. Chem. 107 (5):1576–1585. doi:10.1063/1.474510.
  • Sgro, L. A., and J. Fernandéz de la Mora. 2004. A simple turbulent mixing CNC for charged particle detection down to 1.2 nm. Aerosol Sci. Technol. 38 (1):1–11. doi:10.1080/02786820490247560.
  • Sinclair, D. 1982. Particle size sensitivity of condensation nucleus counters. Atmos. Environ. 16 (5):955–958. doi:10.1016/0004-6981(82)90181-0.
  • Sinclair, D., and G. S. Hoopes. 1975. A continuous flow condensation nucleus counter. J. Aerosol Sci. 6 (1):1–7. doi:10.1016/0021-8502(75)90036-1.
  • Sipilä, M., K. Lehtipalo, M. Attoui, K. Neitola, T. Petaja, P. P. Aalto, C. D. O'Dowd, and M. Kulmala. 2009. Laboratory verification of PH-CPC's ability to monitor atmospheric Sub-3 nm clusters. Aerosol Sci. Technol. 43 (2):126–135. doi:10.1080/02786820802506227.
  • Sipilä, M., K. Lehtipalo, M. Kulmala, T. Petaja, H. Junninen, P. P. Aalto, H. E. Manninen, E. M. Kyro, E. Asmi, I. Riipinen, J. Curtius, A. Kurten, S. Borrmann, and C. D. O'Dowd. 2008. Applicability of condensation particle counters to measure atmospheric clusters. Atmos. Chem. Phys. 8 (14):4049–4060. doi:10.5194/acp-8-4049-2008.
  • Steiner, G., A. Franchin, J. Kangasluoma, V. M. Kerminen, M. Kulmala, and T. Petaja. 2017. Production of neutral molecular clusters by controlled neutralization of mobility standards. Aerosol Sci. Technol. 51 (8):946–955. doi:10.1080/02786826.2017.1328103.
  • Steiner, G., T. Jokinen, H. Junninen, M. Sipila, T. Petaja, D. Worsnop, G. P. Reischl, and M. Kulmala. 2014. High-resolution mobility and mass spectrometry of negative ions produced in a am-241 aerosol charger. Aerosol Sci. Technol. 48 (3):261–270. doi:10.1080/02786826.2013.870327.
  • Steiner, G., and G. P. Reischl. 2012. The effect of carrier gas contaminants on the charging probability of aerosols under bipolar charging conditions. J. Aerosol Sci. 54:21–31. doi:10.1016/j.jaerosci.2012.07.008.
  • Stolzenburg, M. R. 1986. Counting efficiency and detection limit of condensation nuclei counters for submicrometer aerosols (Part-I and Part-II) – Comments. J. Colloid Interface Sci. 109 (1):292–293. doi:10.1016/0021-9797(86)90303-6.
  • Stolzenburg, M. R., and P. H. McMurry. 1984. A theoretical model for an ultrafine aerosol condensation nucleus counter, in Aerosols, ed. b. Y. H. Liu, d. Y. H. Pui, and h. J. Fissan. New York: Elsevier.
  • Stolzenburg, M. R., and P. H. McMurry. 1991. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14 (1):48–65. doi:10.1080/02786829108959470.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–432. doi:10.1080/02786820802157823.
  • Stolzenburg, M. R., J. H. T. Scheckman, M. Attoui, H. S. Han, and P. H. McMurry. 2018. Characterization of the TSI model 3086 differential mobility analyzer for classifying aerosols down to 1nm. Aerosol Sci. Technol. 52 (7):748–756. doi:10.1080/02786826.2018.1456649.
  • Strey, R., P. E. Wagner, and T. Schmeling. 1986. Homogeneous nucleation rates for n-alcohol vapors measured in a 2-piston expansion chamber. J. Chem. Phys. 84 (4):2325–2335. doi:10.1063/1.450396.
  • Strey, R., P. E. Wagner, and Y. Viisanen. 1994. The problem of measuring homogeneous nucleation rates and the molecular contents of nuclei – Progress in the form of nucleation pulse measurements. J. Phys. Chem. 98 (32):7748–7758. doi:10.1021/j100083a003.
  • Takegawa, N., K. Iida, and H. Sakurai. 2017. Modification and laboratory evaluation of a TSI ultrafine condensation particle counter (model 3776) for airborne measurements. Aerosol Sci. Technol. 51 (2):235–245. doi:10.1080/02786826.2016.1261990.
  • Tauber, C., S. Brilke, P. J. Wlasits, P. S. Bauer, G. Koberl, G. Steiner, and P. M. Winkler. 2019. Humidity effects on the detection of soluble and insoluble nanoparticles in butanol operated condensation particle counters. Atmos. Meas. Tech. 12 (7):3659–3671. doi:10.5194/amt-12-3659-2019.
  • Tauber, C., X. Chen, P. E. Wagner, P. M. Winkler, C. J. Hogan, and A. Maißer. 2018. Heterogeneous nucleation onto monoatomic ions: Support for the Kelvin–Thomson theory. Chemphyschem 19 (22):3144–3149. doi:10.1002/cphc.201800698.
  • Tauber, C., G. Steiner, and P. M. Winkler. 2019. Counting efficiency determination from quantitative intercomparison between expansion and laminar flow type condensation particle counter. Aerosol Sci. Technol. 53 (3):344–354. doi:10.1080/02786826.2019.1568382.
  • Ude, S., and J. Fernandez de la Mora. 2005. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36 (10):1224–1237. doi:10.1016/j.jaerosci.2005.02.009.
  • Wagner, P. E. 1985. A constant-angle Mie scattering method (cams) for investigation of particle formation processes. J. Colloid Interface Sci. 105 (2):456–467. doi:10.1016/0021-9797(85)90319-4.
  • Wagner, R., C. Yan, K. Lehtipalo, J. Duplissy, T. Nieminen, J. Kangasluoma, L. R. Ahonen, L. Dada, J. Kontkanen, H. E. Manninen, A. Dias, A. Amorim, P. S. Bauer, A. Bergen, A. K. Bernhammer, F. Bianchi, S. Brilke, S. B. Mazon, X. M. Chen, D. C. Draper, L. Fischer, C. Frege, C. Fuchs, O. Garmash, H. Gordon, J. Hakala, L. Heikkinen, M. Heinritzi, V. Hofbauer, C. R. Hoyle, J. Kirkby, A. Kurten, A. N. Kvashnin, T. Laurila, M. J. Lawler, H. J. Mai, V. Makhmutov, R. L. Mauldin, U. Molteni, L. Nichman, W. Nie, A. Ojdanic, A. Onnela, F. Piel, L. L. J. Quelever, M. P. Rissanen, N. Sarnela, S. Schallhart, K. Sengupta, M. Simon, D. Stolzenburg, Y. Stozhkov, J. Trostl, Y. Viisanen, A. L. Vogel, A. C. Wagner, M. Xiao, P. Ye, U. Baltensperger, J. Curtius, N. M. Donahue, R. C. Flagan, M. Gallagher, A. Hansel, J. N. Smith, A. Tome, P. M. Winkler, D. Worsnop, M. Ehn, M. Sipila, V. M. Kerminen, T. Petaja, and M. Kulmala. 2017. The role of ions in new particle formation in the cloud chamber. Atmos. Chem. Phys. 17 (24):15181–15197. doi:10.5194/acp-17-15181-2017.
  • Wang, J., V. F. McNeill, D. R. Collins, and R. C. Flagan. 2002. Fast mixing condensation nucleus counter: Application to rapid scanning differential mobility analyzer measurements. Aerosol Sci. Technol. 36 (6):678–689. doi:10.1080/02786820290038366.
  • Wang, Y., J. Kangasluoma, M. Attoui, J. Fang, H. Junninen, M. Kulmala, T. Petaja, and P. Biswas. 2017a. The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors. Combust. Flame 176:72–80. doi:10.1016/j.combustflame.2016.10.003.
  • Wang, Y., J. Kangasluoma, M. Attoui, J. X. Fang, H. Junninen, M. Kulmala, T. Petaja, and P. Biswas. 2017b. Observation of incipient particle formation during flame synthesis by tandem differential mobility analysis-mass spectrometry (DMA-MS). P. Combust. Inst. 36 (1):745–752. doi:10.1016/j.proci.2016.07.005.
  • Vanhanen, J., J. Mikkila, K. Lehtipalo, M. Sipila, H. E. Manninen, E. Siivola, T. Petaja, and M. Kulmala. 2011. Particle size magnifier for nano-CN detection. Aerosol Sci. Technol. 45 (4):533–542. doi:10.1080/02786826.2010.547889.
  • Weber, R. J., M. R. Stolzenburg, S. N. Pandis, and P. H. McMurry. 1998. Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (similar to 3–10 nm) size distributions. J. Aerosol Sci. 29 (5–6):601–615. doi:10.1016/S0021-8502(97)10026-X.
  • Wiedensohler, A., P. Aalto, D. Covert, J. Heintzenberg, and P. H. Mcmurry. 1994. Intercomparison of 4 methods to determine size distributions of low-concentration (similar-to-100 cm−3), ultrafine aerosols (3-less-than-d(p)less-than-10 nm) with illustrative data from the arctic. Aerosol Sci. Technol. 21 (2):95–109. doi:10.1080/02786829408959700.
  • Wiedensohler, A., W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, A. M. Fjäraa, E. Asmi, K. Sellegri, R. Depuy, H. Venzac, P. Villani, P. Laj, P. Aalto, J. A. Ogren, E. Swietlicki, P. Williams, P. Roldin, P. Quincey, C. Hüglin, R. Fierz-Schmidhauser, M. Gysel, E. Weingartner, F. Riccobono, S. Santos, C. Grüning, K. Faloon, D. Beddows, R. Harrison, C. Monahan, S. G. Jennings, C. D. O'Dowd, A. Marinoni, H.-G. Horn, L. Keck, J. Jiang, J. Scheckman, P. H. McMurry, Z. Deng, C. S. Zhao, M. Moerman, B. Henzing, G. de Leeuw, G. Löschau, and S. Bastian. 2012. Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 5 (3):657–685. doi:10.5194/amt-5-657-2012.
  • Wiedensohler, A., D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M. Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson, and M. Litchy. 1997. Intercomparison study of the size-dependent counting efficiency of 26 condensation particle counters. Aerosol Sci. Technol. 27*:224–242. doi:10.1080/02786829708965469.
  • Viisanen, Y., and R. Strey. 1994. Homogeneous nucleation rates for n-butanol. J. Chem. Phys. 101 (9):7835–7843. doi:10.1063/1.468208.
  • Wilson, C. T. R. 1897. Condensation of water vapour in the presence of dust-free air and other gases. Philos. Trans. R. Soc. Lond. 189 (0):265–307. doi:10.1098/rsta.1897.0011.
  • Wilson, C. T. R. 1899. On the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultra-violet light, and other agents. Philos. Trans. R. Soc. Lond. 192 (0):403–453. doi:10.1098/rsta.1899.0009.
  • Wilson, J. C., J. H. Hyun, and E. D. Blackshear. 1983. The function and response of an improved stratospheric condensation nucleus counter. J. Geophys. Res. 88 (C11):6781–6785. doi:10.1029/JC088iC11p06781.
  • Wimmer, D., K. Lehtipalo, A. Franchin, J. Kangasluoma, F. Kreissl, A. Kurten, A. Kupc, A. Metzger, J. Mikkila, T. Petaja, F. Riccobono, J. Vanhanen, M. Kulmala, and J. Curtius. 2013. Performance of diethylene glycol-based particle counters in the Sub-3 nm size range. Atmos. Meas. Tech. 6 (7):1793–1804. doi:10.5194/amt-6-1793-2013.
  • Wimmer, D., K. Lehtipalo, T. Nieminen, J. Duplissy, S. Ehrhart, J. Almeida, L. Rondo, A. Franchin, F. Kreissl, F. Bianchi, H. E. Manninen, M. Kulmala, J. Curtius, and T. Petaja. 2015. Technical note: Using DEG-CPCS at upper tropospheric temperatures. Atmos. Chem. Phys. 15 (13):7547–7555. doi:10.5194/acp-15-7547-2015.
  • Winkler, P. M., G. Steiner, A. Vrtala, G. P. Reischl, M. Kulmala, and P. E. Wagner. 2011. Unary and binary heterogeneous nucleation of organic vapors on monodisperse wox seed particles with diameters down to 1.4 nm. Aerosol Sci. Technol. 45 (4):493–498. doi:10.1080/02786826.2010.547536.
  • Winkler, P. M., G. Steiner, A. Vrtala, H. Vehkamaki, M. Noppel, K. E. J. Lehtinen, G. P. Reischl, P. E. Wagner, and M. Kulmala. 2008. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319 (5868):1374–1377. doi:10.1126/science.1149034.
  • Winkler, P. M., A. Vrtala, G. Steiner, D. Wimmer, H. Vehkamaki, K. E. J. Lehtinen, G. P. Reischl, M. Kulmala, and P. E. Wagner. 2012. Quantitative characterization of critical nanoclusters nucleated on large single molecules. Phys. Rev. Lett. 108: 085701. ARTN 085701 doi:10.1103/PhysRevLett.108.085701.
  • Winkler, P. M., A. Vrtala, and P. E. Wagner. 2008. Condensation particle counting below 2 nm seed particle diameter and the transition from heterogeneous to homogeneous nucleation. Atmos. Res. 90 (2–4):125–131. doi:10.1016/j.atmosres.2008.01.001.
  • Yoo, S. H., Kwon, H. B. H. U. S. D. H. Kang, S. M. Lee, J. Han, J. Hwang, and Y. J. Kim. 2019. Mems-based condensation particle counter for real-time monitoring of airborne ultrafine particles at a point of interest. Atmospheric Measurement Techniques Discussions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.