889
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Characterization and demonstration of a black carbon aerosol mimic for instrument evaluation

, , &
Pages 1322-1333 | Received 10 May 2019, Accepted 14 Aug 2019, Published online: 17 Sep 2019

References

  • Andreae, M. O., and V. Ramanathan. 2013. Climate change. Climate’s dark forcings. Science 340 (6130):280–281. doi: 10.1126/science.1235731.
  • Arnott, W. P., K. Hamasha, H. Moosmuller, P. J. Sheridan, and J. A. Ogren. 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39 (1):17–29. doi: 10.1080/027868290901972.
  • Bambha, R. P., and H. A. Michelsen. 2015. Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J. Aerosol Sci. 88:159–181. doi: 10.1016/j.jaerosci.2015.06.006.
  • Baumgardner, D., O. Popovicheva, J. Allan, V. Bernardoni, J. Cao, F. Cavalli, J. Cozic, E. Diapouli, K. Eleftheriadis, P. J. Genberg, et al. 2012. Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations. Atmos. Meas. Tech. 5 (8):1869–1887.
  • Bluvshtein, N., J. M. Flores, Q. F. He, E. Segre, L. Segev, N. N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich. 2017. Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols. Atmos. Meas. Tech. 10 (3):1203–1213. doi: 10.5194/amt-10-1203-2017.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi: 10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos. 118:5380–5552. doi: 10.1002/jgrd.50171.
  • Bueno, P. A., D. K. Havey, G. W. Mulholland, J. T. Hodges, K. A. Gillis, R. R. Dickerson, and M. R. Zachariah. 2011. Photoacoustic measurements of amplification of the absorption cross section for coated soot aerosols. Aerosol Sci. Technol. 45 (10):1217–1230. doi: 10.1080/02786826.2011.587477.
  • Colbeck, I., B. Atkinson, and Y. Johar. 1997. The morphology and optical properties of soot produced by different fuels. J. Aerosol Sci. 28 (5):715–723. doi: 10.1016/S0021-8502(96)00466-1.
  • Conny, J. M., D. B. Klinedinst, S. A. Wight, and J. L. Paulsen. 2003. Optimizing thermal-optical methods for measuring atmospheric elemental (black) carbon: A response surface study. Aerosol Sci. Technol. 37 (9):703–723. doi: 10.1080/02786820300920.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies instrument inter-comparison project overview. Aerosol Sci. Technol. 44 (8):592–611. doi: 10.1080/02786826.2010.482113.
  • Davies, N. W., M. I. Cotterell, C. Fox, K. Szpek, J. M. Haywood, and J. M. Langridge. 2018. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone. Atmos. Meas. Tech. 11 (4):2313–2324. doi: 10.5194/amt-11-2313-2018.
  • di Stasio, S., and A. Braun. 2006. Comparative NEXAFS study on soot obtained from an ethylene/air flame, a diesel engine, and graphite. Energy Fuels 20:187–194. doi: 10.1021/ef058019g.
  • Gordon, I. E., L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, et al. 2017. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203:3–69. doi: 10.1016/j.jqsrt.2017.06.038.
  • Groves, K. S., and A. F. Tuck. 1979. Simultaneous effects of CO2 and chlorofluoromethanes on stratospheric ozone. Nature 280 (5718):127–129. doi: 10.1038/280127a0.
  • Havey, D. K., P. A. Bueno, K. A. Gillis, J. T. Hodges, G. W. Mulholland, R. D. van Zee, and M. R. Zachariah. 2010. Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols. Anal. Chem. 82 (19):7935–7942. doi: 10.1021/ac101366e.
  • Havey, D. K., D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges. 2009. Ultra-sensitive optical measurements of high-j transitions in the O-2 a-band. Chem.Phys. Lett. 483 (1–3):49–54. doi: 10.1016/j.cplett.2009.10.067.
  • IPCC. 2013. Climate change 2013: The physical science basis. In Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY: Cambridge University Press.
  • Kirchstetter, T. W., and T. Novakov. 2007. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 41 (9):1874–1888. doi: 10.1016/j.atmosenv.2006.10.067.
  • Laborde, M., P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel. 2012. Sensitivity of the single particle soot photometer to different black carbon types. Atmos. Meas. Tech. 5 (5):1031–1043. doi: 10.5194/amt-5-1031-2012.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 40 (9):697–708. doi: 10.1080/02786820600803917.
  • Lam, N. L., Y. Chen, C. Weyant, C. Venkataraman, P. Sadavarte, M. A. Johnson, K. R. Smith, B. T. Brem, J. Arineitwe, J. E. Ellis, and T. C. Bond. 2012. Household light makes global heat: High black carbon emissions from kerosene wick lamps. Environ. Sci. Technol. 46:13531–13538. doi: 10.1021/es302697h.
  • Landrigan, P. J., R. Fuller, N. J. R. Acosta, O. Adeyi, R. Arnold, N. Basu, A. B. Balde, R. Bertollini, S. Bose-O'Reilly, J. I. Boufford, et al. 2018. The lancet commission on pollution and health. Lancet 391 (10119):462–512. doi: 10.1016/S0140-6736(17)32345-0.
  • Langridge, J. M., M. S. Richardson, D. A. Lack, C. A. Brock, and D. M. Murphy. 2013. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity. Aerosol Sci. Technol. 47 (11):1163–1173. doi: 10.1080/02786826.2013.827324.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–371. doi: 10.1038/nature15371.
  • Lim, S., X. Fain, M. Zanatta, J. Cozic, J. L. Jaffrezo, P. Ginot, and P. Laj. 2014. Refractory black carbon mass concentrations in snow and ice: Method evaluation and inter-comparison with elemental carbon measurement. Atmos. Meas. Tech. 7 (10):3307–3324. doi: 10.5194/amt-7-3307-2014.
  • Long, D. A., G. W. Truong, J. T. Hodges, and C. E. Miller. 2013. Absolute (CO2)-C-12-O-16 transition frequencies at the khz-level from 1.6 to 7.8 mm. J. Quant. Spectrosc. Radiat. Transf. 130:112–115. doi: 10.1016/j.jqsrt.2013.07.001.
  • Mason, B., N. L. Wagner, G. Adler, E. Andrews, C. A. Brock, T. D. Gordon, D. A. Lack, A. E. Perring, M. S. Richardson, J. P. Schwarz, et al. 2018. An intercomparison of aerosol absorption measurements conducted during the SEAC(4)RS campaign. Aerosol Sci. Technol. 52 (9):1012–1027. doi: 10.1080/02786826.2018.1500012.
  • Mishchenko, M. I., D. W. Mackowski, and L. D. Travis. 1995. Scattering of light by bispheres with touching and separated components. Appl. Opt. 34 (21):4589–4599. doi: 10.1364/AO.34.004589.
  • Moore, R. H., L. D. Ziemba, D. Dutcher, A. J. Beyersdorf, K. Chan, S. Crumeyrolle, T. M. Raymond, K. L. Thornhill, E. L. Winstead, and B. E. Anderson. 2014. Mapping the operation of the miniature combustion aerosol standard (Mini-CAST) soot generator. Aerosol Sci. Technol. 48 (5):467–479. doi: 10.1080/02786826.2014.890694.
  • Moosmüller, H., and W. P. Arnott. 2009. Particle optics in the rayleigh regime. J. Air Waste Manage. Assoc. 59 (9):1028–1031. doi: 10.3155/1047-3289.59.9.1028.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 110:844–878. doi: 10.1016/j.jqsrt.2009.02.035.
  • Moteki, N., and Y. Kondo. 2010. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Sci. Technol. 44 (8):663–675. doi: 10.1080/02786826.2010.484450.
  • Muller, T., J. S. Henzing, G. de Leeuw, A. Wiedensohler, A. Alastuey, H. Angelov, M. Bizjak, M. C. Coen, J. E. Engstrom, C. Gruening, et al. 2011. Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops. Atmos. Meas. Tech. 4:245–268. doi: 10.5194/amt-4-245-2011.
  • NIST. 2011. Workshop on aerosol metrology needs for climate science. Gaithersburg, MD.
  • Radney, J. G., X. Ma, K. A. Gillis, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister. 2013. Direct measurements of mass-specific optical cross sections of single component aerosol mixtures. Anal. Chem. 85 (17):8319–8325. doi: 10.1021/ac401645y.
  • Radney, J. G., and C. D. Zangmeister. 2015. Measurement of gas and aerosol phase absorption spectra across the visible and near-ir using supercontinuum photoacoustic spectroscopy. Anal. Chem. 87 (14):7356–7363. doi: 10.1021/acs.analchem.5b01541.
  • Radney, J. G., and C. D. Zangmeister. 2017. Light source effects on aerosol photoacoustic spectroscopy measurements. J. Quant. Spectrosc. Radiat. Transf. 187:145–149. doi: 10.1016/j.jqsrt.2016.09.026.
  • Radney, J. G., and C. D. Zangmeister. 2018. Comparing aerosol refractive indices retrieved from full distribution and size- and mass-selected measurements. J. Quant. Spectrosc. Radiat. Transf. 220:52–66. doi: 10.1016/j.jqsrt.2018.08.021.
  • Robichaud, D. J., J. T. Hodges, L. R. Brown, D. Lisak, P. Masłowski, L. Y. Yeung, M. Okumura, and C. E. Miller. 2008. Experimental intensity and lineshape parameters of the oxygen a-band using frequency-stabilized cavity ring-down spectroscopy. J. Mol. Spectrosc. 248 (1):1–13. doi: 10.1016/j.jms.2007.10.010.
  • Schmidt, M. W. I., J. O. Skjemstad, C. I. Czimczik, B. Glaser, K. M. Prentice, Y. Gelinas, and T. A. J. Kuhlbusch. 2001. Comparative analysis of black carbon in soils. Global Biogeochem. Cycles 15 (1):163–167. doi: 10.1029/2000GB001284.
  • Schnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke. 2006. Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion. Atmos. Chem. Phys. 6 (10):2981–2990. doi: 10.5194/acp-6-2981-2006.
  • Schwarz, J. P., S. J. Doherty, F. Li, S. T. Ruggiero, C. E. Tanner, A. E. Perring, R. S. Gao, and D. W. Fahey. 2012. Assessing single particle soot photometer and integrating sphere/integrating sandwich spectrophotometer measurement techniques for quantifying black carbon concentration in snow. Atmos. Meas. Tech. 5 (11):2581–2592. doi: 10.5194/amt-5-2581-2012.
  • Slowik, J. G., E. S. Cross, J. H. Han, P. Davidovits, T. B. Onasch, J. T. Jayne, L. R. WilliamS, M. R. Canagaratna, D. R. Worsnop, R. K. Chakrabarty, et al. 2007. An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol. 41 (3):295–314. doi: 10.1080/02786820701197078.
  • You, R., J. G. Radney, M. R. Zachariah, and C. D. Zangmeister. 2016. Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and nonabsorbing materials. Environ. Sci. Technol. 50:7982–7990. doi: 10.1021/acs.est.6b01473.
  • Zangmeister, C. D., and J. G. Radney. 2018. Multiphase environmental chemistry in the atmosphere. Washington, DC: ACS.
  • Zangmeister, C. D., J. G. Radney, L. T. Dockery, J. T. Young, X. F. Ma, R. A. You, and M. R. Zachariah. 2014. Packing density of rigid aggregates is independent of scale. Proc. Natl. Acad. Sci. U. S. A. 111 (25):9037–9041. doi: 10.1073/pnas.1403768111.
  • Zangmeister, C. D., R. You, E. M. Lunny, A. E. Jacobson, M. Okumura, M. R. Zachariah, and J. G. Radney. 2018. Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol. Carbon 136:85–93. doi: 10.1016/j.carbon.2018.04.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.