23,582
Views
146
CrossRef citations to date
0
Altmetric
Review Articles

Real-time sensing of bioaerosols: Review and current perspectives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 465-495 | Received 03 Jul 2019, Accepted 28 Aug 2019, Published online: 27 Sep 2019

References

  • Agranovski, V., Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska. 2003. Performance evaluation of the UVAPS: Influence of physiological age of airborne bacteria and bacterial stress. J. Aerosol Sci. 34 (12):1711–1727. doi:10.1016/S0021-8502(03)00191-5.
  • Agranovski, V., Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska. 2003. Real-time measurement of bacterial aerosols with the UVAPS: Performance evaluation. J. Aerosol Sci. 34 (3):301–317. doi:10.1016/S0021-8502(02)00181-7.
  • Agranovski, V., Z. D. Ristovski, G. A. Ayoko, and L. Morawska. 2004. Performance evaluation of the UVAPS in measuring biological aerosols: Fluorescence spectra from NAD(P)H coenzymes and riboflavin. Aerosol Sci. Technol. 38 (4):354–364. doi:10.1080/02786820490437505.
  • Ammor, M. S. 2007. Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J. Fluoresc. 17 (5):455–459. doi:10.1007/s10895-007-0180-6.
  • Aylor, D. E., D. G. Schmale, E. J. Shields, M. Newcomb, and C. J. Nappo. 2011. Tracking the potato late blight pathogen in the atmosphere using unmanned aerial vehicles and Lagrangian modeling. Agric. Forest Meteorol. 151 (2):251–260. doi:10.1016/j.agrformet.2010.10.013.
  • Ballard, Z. S., C. Brown, and A. Ozcan. 2018. Mobile technologies for the discovery, analysis, and engineering of the global microbiome. ACS Nano 12 (4):3065–3082. doi:10.1021/acsnano.7b08660.
  • Beggs, P. J. 2004. Impacts of climate change on aeroallergens: Past and future. Clin. Exp. Allergy 34 (10):1507–1513. doi:10.1111/j.1365-2222.2004.02061.x.
  • Beug, H. J. 2004. Leitfaden der pollenbestimmung fur mitteleuropa und angrenzende gebiete. Münich: Verlag Friedrich Pfeil.
  • Bhangar, S., R. I. Adams, W. Pasut, J. A. Huffman, E. A. Arens, J. W. Taylor, T. D. Bruns, and W. W. Nazaroff. 2016. Chamber bioaerosol study: Human emissions of size-resolved fluorescent biological aerosol particles. Indoor Air 26 (2):193–206. doi:10.1111/ina.12195.
  • Blaha, J., G. Rosasco, and E. Etz. 1978. Raman microprobe characterization of residual carbonaceous material associated with urban airborne particulates. Appl. Spectrosc. 32 (3):292–297. doi:10.1366/000370278774331341.
  • Brands, M., M. Kamphus, T. Böttger, J. Schneider, F. Drewnick, A. Roth, J. Curtius, C. Voigt, A. Borbon, M. Beekmann, et al. 2011. Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009. Aerosol Sci. Technol. 45 (1):46–64. doi:10.1080/02786826.2010.517813.
  • Brosseau, L. M., D. Vesley, N. Rice, K. Goodell, M. Nellis, and P. Hairston. 2000. Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector. Aerosol Sci. Technol. 32 (6):545–558. doi:10.1080/027868200303461.
  • Brydegaard, M., Z. Guan, M. Wellenreuther, and S. Svanberg. 2009. Insect monitoring with fluorescence lidar techniques: Feasibility study. Appl. Opt. 48 (30):5668–5677. doi:10.1364/AO.48.005668.
  • Burge, H. 1990. Bioaerosols – prevalence and health effects in the indoor environment. J. Allergy Clin. Immunol. 86 (5):687–701. doi:10.1016/S0091-6749(05)80170-8.
  • Buteau, S., P. Lahaie, S. Rowsell, G. Rustad, K. Baxter, M. Castle, V. Foot, R. Vanderbeek, and R. Warren. 2010. Laser based stand-off detection of biological agents. NATO Report RTO-TR-SET. https://apps.dtic.mil/dtic/tr/fulltext/u2/a517819.pdf.
  • Buteau, S., J.-R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Déry, J. Ho, and J. McFee. 2008. Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy. In Advanced environmental monitoring, eds. Y. J. Kim and U. Platt, 203–216. Dordrecht: Springer.
  • Buters, J. T. M., C. Antunes, A. Galveias, K. C. Bergmann, M. Thibaudon, C. Galán, C. Schmidt-Weber, and J. Oteros. 2018. Pollen and spore monitoring in the world. Clin Transl. Allergy 8 (1):9–9. doi:10.1186/s13601-018-0197-8.
  • Cabalo, J., M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger. 2008. Overview of the TAC-BIO detector. Optically based biological and chemical detection for defence IV, 71160D. International Society for Optics and Photonics. Paper presented at SPIE Security + Defence, Cardiff, Wales, United Kingdom. doi:10.1117/12.799843.
  • Campbell, S. D., D. P. Tremblay, F. Daver, and D. Cousins. 2005. Wavelength comparison study for bioaerosol detection. Sensors, Command, Control, Communications, intell. (C31) Technologies Homeland Security and Homeland Defense IV, Pts 1 and 2. Vol. 5778 :130–138. Paper presented at Defense and Security, Orlando, Florida, United States. doi:10.1117/12.610998.
  • Canagaratna, M. R., J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. Onasch, F. Drewnick, H. Coe, A. M. Middlebrook, et al. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26 (2):185–222. doi:10.1002/mas.20115.
  • Carnelley, T., J. S. Haldane, and A. M. Anderson. 1887. The carbonic acid, organic matter, and micro-organisms in air, more especially of dwellings and schools. Philosoph. Trans. Roy. Soc. London. B 178 :61–111. doi:10.1098/rstb.1887.0004.
  • Caruana, D. J. 2011. Detection and analysis of airborne particles of biological origin: Present and future. Analyst 136 (22):4641–4652. doi:10.1039/c1an15506g.
  • Chen, P. S., and C. S. Li. 2007. Real-time monitoring for bioaerosols - flow cytometry. Analyst 132 (1):14–16. doi:10.1039/B603611M.
  • Cho, Y. S., S. C. Hong, J. Choi, and J. H. Jung. 2019. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sens. Actuator, B-Chem. 284 :525–533. doi:10.1016/j.snb.2018.12.155.
  • Choi, J., S. C. Hong, W. Kim, and J. H. Jung. 2017. Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sens. 2 (4):513–521. doi:10.1021/acssensors.6b00753.
  • Christesen, S., D. Merrow, C. N. M. S. Desha, A. Wong, M. W. Wilson, and J. C. Butler. 1994. Ultraviolet fluorescence lidar detection of bioaerosols. SPIE Proc. 222 :228–237. doi:10.1117/12.177988.
  • Cox, C. S., and C. M. Wathes. 1995. Bioaerosols handbook. Boca Raton, FL: Lewis Publishers.
  • Cox, J. D., H. Mbareche, W. G. Lindsley, and C. Duchaine. 2019. Bioaerosol indoor field sampling. Aerosol Sci. Technol. In Review.
  • Craig, R. L., A. L. Bondy, and A. P. Ault. 2015. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level. Anal. Chem. 87 (15):7510–7514. doi:10.1021/acs.analchem.5b01507.
  • Craig, R. L., A. L. Bondy, and A. P. Ault. 2017. Computer-controlled Raman microspectroscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles. Aerosol Sci. Technol. 51 (9):1099–1112. doi:10.1080/02786826.2017.1337268.
  • Crawford, I., M. W. Gallagher, K. N. Bower, T. W. Choularton, M. J. Flynn, S. Ruske, C. Listowski, N. Brough, T. Lachlan-Cope, Z. L. Fleming,et al. 2017. Real-time detection of airborne fluorescent bioparticles in Antarctica. Atmos. Chem. Phys. 17 (23):14291–14307. doi:10.5194/acp-17-14291-2017.
  • Crawford, I., G. Lloyd, E. Herrmann, C. R. Hoyle, K. N. Bower, P. J. Connolly, M. J. Flynn, P. H. Kaye, T. W. Choularton, and M. W. Gallagher. 2016. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the high-altitude research station Jungfraujoch. Atmos. Chem. Phys. 16 (4):2273–2284. doi:10.5194/acp-16-2273-2016.
  • Crawford, I., S. Ruske, D. O. Topping, and M. W. Gallagher. 2015. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol. Atmos. Meas. Tech. 8 (11):4979–4991. doi:10.5194/amt-8-4979-2015.
  • Creamean, J. M., K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock,et al. 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western U.S. Science 339 (6127):1572–1578. doi:10.1126/science.1227279.
  • Crouzy, B., M. Stella, T. Konzelmann, B. Calpini, and B. Clot. 2016. All-optical automatic pollen identification: Towards an operational system. Atmos. Environ. 140 :202–212. doi:10.1016/j.atmosenv.2016.05.062.
  • Czerwieniec, G. A., S. C. Russell, H. J. Tobias, M. E. Pitesky, D. P. Fergenson, P. Steele, A. Srivastava, J. M. Horn, M. Frank, E. E. Gard, et al. 2005. Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. Anal. Chem. 77 (4):1081–1087. doi:10.1021/ac0488098.
  • Cziczo, D. J., D. S. Thomson, T. L. Thompson, P. J. DeMott, and D. M. Murphy. 2006. Particle analysis by laser mass spectrometry (palms) studies of ice nuclei and other low number density particles. Int. J. Mass Spectr. 258 (1–3):21–29. doi:10.1016/j.ijms.2006.05.013.
  • D'Amato, G., L. Cecchi, S. Bonini, C. Nunes, I. Annesi-Maesano, H. Behrendt, G. Liccardi, T. Popov, and P. van Cauwenberge. 2007. Allergenic pollen and pollen allergy in Europe. Allergy 62 :976–990. doi:10.1111/j.1398-9995.2007.01393.x.
  • D'Amato, G., C. Vitale, M. Lanza, A. Molino, and M. D'Amato. 2016. Climate change, air pollution, and allergic respiratory diseases: An update. Current Opin. Allergy Clin. Immunol. 16 :434–440. doi:10.1097/ACI.0000000000000301.
  • Damit, B. 2017. Droplet-based microfluidics detector for bioaerosol detection. Aerosol Sci. Technol. 51 (4):488–500. doi:10.1080/02786826.2016.1275515.
  • Davitt, K., Y.-K. Song, W. R. Patterson, A. V. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. K. Chang. 2005. 290 and 340 nm UV led arrays for fluorescence detection from single airborne particles. Opt. Express 13 (23):9548–9555. doi:10.1364/OPEX.13.009548.
  • De Gelder, J., K. De Gussem, P. Vandenabeele, and L. Moens. 2007. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38(9):1133–1147. doi:10.1002/jrs.1734.
  • Deboudt, K., P. Flament, M. Choël, A. Gloter, S. Sobanska, and C. Colliex. 2010. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis. J. Geophys. Res. Atmos. 115 (D24). doi:10.1029/2010JD013921.
  • DeCarlo, P. F., J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, et al. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78(24):8281–8289. CrossRef][https://doi.org/10.1021/ac061249n]
  • DeFreez, R. 2009. LIF bio-aerosol threat triggers: Then and now. In Optically based biological and chemical detection for defence V, 74840H. International Society for Optics and Photonics, Berlin, Germany. doi:10.1117/12.835088
  • Després, V. R., J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. A. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. O. Andreae, U. Pöschl, et al. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus Ser. B-Chem. Phys. Meteorol. 64 (1):15598. doi:10.3402/tellusb.v64i0.15598.
  • Doughty, D. C., and S. C. Hill. 2017. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol. J. Quant. Spectrosc. Radiat. Transfer 188 :103–117. doi:10.1016/j.jqsrt.2016.06.042.
  • Douglas, P., S. Robertson, R. Gay, A. L. Hansell, and T. W. Gant. 2018. A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 221 (2):134–173. doi:10.1016/j.ijheh.2017.10.019.
  • Douwes, J., P. Thorne, N. Pearce, and D. Heederik. 2003. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 47 :187–200. doi:10.1093/annhyg/meg032.
  • Drewnick, F., S. S. Hings, P. DeCarlo, J. Jayne, M. Gonin, K. Fuhrer, S. Weimer, J. Jimenez, K. L. Demerjian, S. Borrmann, et al. 2005. A new time-of-flight aerosol mass spectrometer (TOF-AMS) - instrument description and first field deployment. Aerosol Sci. Technol. 39 (7):637. doi:10.1080/02786820500182040.
  • Dzenitis, J. M., and A. J. Makarewicz. 2010. The autonomous pathogen detection system. In The Microflow Cytometer, ed. F. S. Ligler and J. S. Kim, 263–286. Chapter 16. CRC Press.
  • Eiguren Fernandez, A., G. S. Lewis, and S. V. Hering. 2014. Design and laboratory evaluation of a sequential spot sampler for time-resolved measurement of airborne particle composition. Aerosol Sci. Technol. 48 (6):655–663. doi:10.1080/02786826.2014.911409.
  • Eversole, J. D., J. J. Hardgrove, W. K. Cary, D. P. Choulas, and M. Seaver. 1999. Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results. Field Anal. Chem. Technol. 3(4–5):249–259. doi:10.1002/(SICI)1520-6521(1999)3:4/5 < 249::AID-FACT4 > 3.0.CO;2-O.
  • Fennelly, M. J., G. Sewell, M. B. Prentice, D. J. O’Connor, and J. R. Sodeau. 2017. The use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmosphere 9(1):1. doi:10.3390/atmos9010001.
  • Fergenson, D. P., M. E. Pitesky, H. J. Tobias, P. T. Steele, G. A. Czerwieniec, S. C. Russell, C. B. Lebrilla, J. M. Horn, K. R. Coffee, A. Srivastava,et al. 2004. Reagentless detection and classification of individual bioaerosol particles in seconds. Anal. Chem. 76 (2):373–378. doi:10.1021/ac034467e.
  • Foat, T. G., W. J. Sellors, M. D. Walker, P. A. Rachwal, J. W. Jones, D. D. Despeyroux, L. Coudron, I. Munro, D. K. McCluskey, C. K. L. Tan, et al. 2016. A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets. j. Aerosol Sci. 95 :43–53. doi:10.1016/j.jaerosci.2016.01.007.
  • Foot, V. E., P. H. Kaye, W. R. Stanley, S. J. Barrington, M. Gallagher, and A. Gabey. 2008. Low-cost real-time multi-parameter bio-aerosol sensors. Proc. SPIE - Int. Soc. Opt. Eng. 7116 :711601. doi:10.1117/12.800226.
  • Forde, E., M. Gallagher, V. Foot, R. Sarda-Esteve, I. Crawford, P. Kaye, W. Stanley, and D. Topping. 2019. Characterisation and source identification of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom. Atmos. Chem. Phys. 19 (3):1665–1684. doi:10.5194/acp-19-1665-2019.
  • Frank, M., E. E. Gard, H. J. Tobias, K. L. Adams, M. J. Bogan, K. R. Coffee, G. R. Farquar, D. P. Fergenson, S. I. Martin, M. Pitesky,et al. 2011. Single-particle aerosol mass spectrometry (spams) for high-throughput and rapid analysis of biological aerosols and single cells. In Rapid characterization of microorganisms by mass spectrometry, ed. P. Demirev and C. Fenselau, vol. 1065, 161–196. American Chemical Society.
  • Franze, T., M. G. Weller, R. Niessner, and U. Pöschl. 2005. Protein nitration by polluted air. Environ. Sci. Technol. 39 (6):1673–1678. doi:10.1021/es0488737.
  • Fröhlich-Nowoisky, J., C. J. Kampf, B. Weber, J. A. Huffman, C. Pöhlker, M. O. Andreae, N. Lang-Yona, S. M. Burrows, S. S. Gunthe, W. Elbert, et al. 2016. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182 :346–376. doi:10.1016/j.atmosres.2016.07.018.
  • Frohlich-Nowoisky, J., C. R. Nespoli, D. A. Pickersgill, P. E. Galand, I. Muller-Germann, T. Nunes, J. G. Cardoso, S. M. Almeida, C. Pio, M. O. Andreae, et al. 2014. Diversity and seasonal dynamics of airborne archaea. Biogeosciences 11 :6067–6079. doi:10.5194/bg-11-6067-2014.
  • Gabey, A., W. R. Stanley, M. Gallagher, and P. H. Kaye. 2011. The fluorescence properties of aerosol larger than 0.8 µm in urban and tropical rainforest locations. Atmos. Chem. Phys. 11 (11):5491–5504. doi:10.5194/acp-11-5491-2011.
  • Gabey, A. M., M. W. Gallagher, J. Whitehead, J. R. Dorsey, P. H. Kaye, and W. R. Stanley. 2010. Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos. Chem. Phys. 10 (10):4453–4466. doi:10.5194/acp-10-4453-2010.
  • Gabey, A. M., M. Vaitilingom, E. Freney, J. Boulon, K. Sellegri, M. W. Gallagher, I. P. Crawford, N. H. Robinson, W. R. Stanley, and P. H. Kaye. 2013. Observations of fluorescent and biological aerosol at a high-altitude site in Central France. Atmos. Chem. Phys. 13 (15):7415–7428. doi:10.5194/acp-13-7415-2013.
  • Galán, C., M. Smith, M. Thibaudon, G. Frenguelli, J. Oteros, R. Gehrig, U. Berger, B. Clot, and R. Brandao. 2014. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia 30 (4):385–395. doi:10.1007/s10453-014-9335-5.
  • Gard, E., J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather. 1997. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable atofms. Anal. Chem. 69 (20):4083–4091. doi:10.1021/ac970540n.
  • Garstecki, P., M. J. Fuerstman, H. A. Stone, and G. M. Whitesides. 2006. Formation of droplets and bubbles in a microfluidic t-junction—scaling and mechanism of break-up. Lab on a Chip 6 (3):437–446. doi:10.1039/b510841a.
  • Gelbwach, J., and M. Birnbaum. 1973. Fluorescence of atmospheric aerosols and lidar implications. Appl. Opt. 12 :2442–2447. doi:10.1364/AO.12.002442.
  • Gemayel, R., S. Hellebust, B. Temime-Roussel, N. Hayeck, J. T. Van Elteren, H. Wortham, and S. Gligorovski. 2016. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-TOF-MS). Atmos. Meas. Tech. 9 (4):1947–1959. doi:10.5194/amt-9-1947-2016.
  • Georgakopoulos, D. G., V. Despres, J. Frohlich-Nowoisky, R. Psenner, P. A. Ariya, M. Posfai, H. E. Ahern, B. F. Moffett, and T. C. J. Hill. 2009. Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles. Biogeosciences 6 (4):721–737. doi:10.519/bg-6-721-2009.
  • Gieray, R. A., P. T. A. Reilly, M. Yang, W. B. Whitten, and J. M. Ramsey. 1997. Real-time detection of individual airborne bacteria. J. Microbiol. Methods 29 (3):191–199. doi:10.1016/S0167-7012(97)00049-.
  • Gosselin, M. I., C. M. Rathnayake, I. Crawford, C. Pöhlker, J. Fröhlich-Nowoisky, B. Schmer, V. R. Després, G. Engling, M. Gallagher, E. Stone, et al. 2016. Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid Forest. Atmos. Chem. Phys. 16 (23):15165–15184. doi:10.5194/acp-16-15165-2016.
  • Gregory, P. H. 1961. The microbiology of the atmosphere. London/New York: Leonard Hill Ltd/Interscience Publishers Inc.
  • Greiner, A. N., P. W. Hellings, G. Rotiroti, and G. K. Scadding. 2011. Allergic rhinitis. Lancet 378 (9809):2112–2122. doi:10.1016/S0140-6736(11)60130-X.
  • Griffiths, W. D., and G. A. L. Decosemo. 1994. The assessment of bioaerosols—a critical review. J. Aerosol Sci. 25 (8):1425–1458. doi:10.1016/0021-8502(94)90218-6.
  • Grometstein, A. A. 2011. MIT Lincoln laboratory: Technology in support of national security. 45–49. Lexington: Lincoln Laboratory, Massachusetts Institute of Technology.
  • Guedes, A., H. Ribeiro, M. Fernández-González, M. Aira, and I. Abreu. 2014. Pollen Raman spectra database: Application to the identification of airborne pollen. Talanta 119 :473–478. doi:10.1016/j.talanta.2013.11.046.
  • Hairston, P. P., J. Ho, and F. R. Quant. 1997. Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J. Aerosol Sci. 28 (3):471–482. doi:10.1016/S0021-8502(96)00448-X.
  • Hallar, A. G., G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson. 2011. Atmospheric bioaerosols transported via dust storms in the Western United States. Geophys. Res. Lett. 38 (17):n/a. doi:10.1029/2011GL048166.
  • Hamaoui-Laguel, L.,. R. Vautard, L. Liu, F. Solmon, N. Viovy, D. Khvorostyanov, F. Essl, I. Chuine, A. Colette, M. A. Semenov, et al. 2015. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat. Clim. Change 5 (8):766–U186. doi:10.1038/nclimate2652.
  • Han, T., H. R. An, and G. Mainelis. 2010. Performance of an electrostatic precipitator with superhydrophobic surface when collecting airborne bacteria. Aerosol Sci. Technol. 44 (5):339–348. doi:10.1080/0278682100364932.
  • Healy, D. A., J. A. Huffman, D. J. O’Connor, C. Pöhlker, U. Pöschl, and J. R. Sodeau. 2014. Ambient measurements of biological aerosol particles near Killarney, Ireland: A comparison between real-time fluorescence and microscopy techniques. Atmos. Chem. Phys. 14 (15):8055–8069. doi:10.5194/acp-14-8055-2014.
  • Healy, D. A., D. J. O'Connor, A. M. Burke, and J. R. Sodeau. 2012. A laboratory assessment of the waveband integrated bioaerosol sensor (WIBS-4) using individual samples of pollen and fungal spore material. Atmos. Environ. 60 :534–543. doi:10.1016/j.atmosenv.2012.06.052.
  • Heidelberg, J., M. Shahamat, M. Levin, I. Rahman, G. Stelma, C. Grim, and R. Colwell. 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl. Environ. Microbiol. 63 (9):3585–3588.
  • Hernandez, M., A. E. Perring, K. McCabe, G. Kok, G. Granger, and D. Baumgardner. 2016. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. Atmos. Meas. Tech. 9 (7):3283–3292. doi:10.5194/amt-9-3283-2016.
  • Herzog, W. D., S. M. Tysk, D. W. Tardiff, G. G. Cappiello, J. M. Jong, T. H. Jeys, R. H. Hoffeld, A. Sanchez, and V. Daneu. 2007. Measurement of aerosol-particle trajectories using a structured laser beam. Appl. Opt. 46 (16):3150–3155. doi:10.1364/AO.46.003150.
  • Hill, S. C., D. C. Doughty, Y.-L. Pan, C. Williamson, J. L. Santarpia, and H. H. Hill. 2014. Fluorescence of bioaerosols: Mathematical model including primary fluorescing and absorbing molecules in bacteria: Errata. Opt. Express 22 (19):22817–22819. doi:10.1364/OE.21.022285.
  • Hill, S. C., M. W. Mayo, and R. K. Chang. 2009. Fluorescence of bacteria, pollens, and naturally occurring airborne particles: Excitation/emission spectra. Laboratory, A. R., ed., 1–52. Adelphi, MD. https://apps.dtic.mil/docs/citations/ADA494347.
  • Hill, S. C., Y. L. Pan, C. Williamson, J. L. Santarpia, and H. H. Hill. 2013. Fluorescence of bioaerosols: Mathematical model including primary fluorescing and absorbing molecules in bacteria. Opt. Express 21 (19):22285–22313. doi:10.1364/OE.21.022285.
  • Hill, S. C., R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang. 2001. Fluorescence from airborne microparticles: Dependence on size, concentration of fluorophores, and illumination intensity. Appl. Opt. 40 (18):3005–3013. doi:10.1364/AO.40.003005.
  • Hill, S. C., R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather. 1999. Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal. Chem. Technol. 3 (4–5):221–239. doi:10.1002/(SICI)1520-6521(1999)3:4/5 < 221::AID-FACT2 > 3.0.CO;2-7.
  • Hill, S. C., C. C. Williamson, D. C. Doughty, Y. L. Pan, J. L. Santarpia, and H. H. Hill. 2015. Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria. J. Quant. Spectrosc. Radiat. Transfer 157 :54–70. doi:10.1016/j.jqsrt.2015.01.011.
  • Hiranuma, N., S. Brooks, J. Gramann, and B. Auvermann. 2011. High concentrations of coarse particles emitted from a cattle feeding operation. Atmos. Chem. Phys. 11 (16):8809–8823. doi:10.5194/acp-11-8809-2011.
  • Hirst, J. M. 1952. An automatic volumetric spore trap. Ann. Appl. Biol. 39 (2):257–265. doi:10.1111/j.1744-7348.1952.tb00904.x.
  • Ho, J. 2002. Future of biological aerosol detection. Anal. Chim. Acta 457 (1):125–148. doi:10.1016/S0003-2670(01)01592-6.
  • Ho, J., and G. Fisher. 1993. Detection of bw agents: Flow cytometry measurement of bacillus subtilis (BS) spore fluorescence Suffield Memorandum 1421:Suffield Memorandum 1421.
  • Ho, J., M. Spence, and P. Hairston. 1999. Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): Correlation of optical data with biological data. Aerobiologia 15 (4):281–291. doi:10.1023/A:1007647522397.
  • Holt, K. A., and K. D. Bennett. 2014. Principles and methods for automated palynology. New Phytologist 203 (3):735–742. doi:10.1111/nph.12848.
  • Hu, W., D. A. Day, P. Campuzano-Jost, B. A. Nault, T. Park, T. Lee, P. Croteau, M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, et al. 2018. Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS): Elemental composition and source apportionment of organic aerosols (OA). ACS Earth Space Chem. 2 (4):410–421. doi:10.1080/02786826.2018.1454584.
  • Huang, H. C., Y. L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang. 2008. Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Opt. Express 16 (21):16523–16528. doi:10.1364/OE.16.016523.
  • Huffman, D. R., and J. A. Huffman. 2019. A wavelength dispersive microscope spectrofluorometer for characterizing multiple particles simultaneously. US Patent US20160320306A1, filed January 8, 2014, and issued April 23, 2019.
  • Huffman, D. R., B. E. Swanson, and J. A. Huffman. 2016. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate. Atmos. Meas. Tech. 9 (8):3987–3998. doi:10.5194/amt-9-3987-2016.
  • Huffman, J. A., A. J. Prenni, P. J. DeMott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. F. Fröhlich-Nowoisky, Y. Tobo, V. Després, E. Garcia, et al. 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13 (13):6151–6164. doi:10.5194/acp-13-6151-2013.
  • Huffman, J. A., and J. Santarpia. 2017. Chapter 1.4: Online techniques for quantification and characterization of biological aerosol. In Microbiology of aerosols, eds. A.-M. Delort, P. Amato, and J. Wiley, 83–114. New York: John Wiley & Sons, Inc.
  • Huffman, J. A., B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Pöschl. 2012. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos. Chem. Phys. 12 (24):11997–12019. doi:10.5194/acp-12-11997-2012.
  • Huffman, J. A., B. Treutlein, and U. Pöschl. 2010. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe. Atmos. Chem. Phys. 10 (7):3215–3233. doi:10.5194/acp-10-3215-2010.
  • Hybl, J. D., S. M. Tysk, S. R. Berry, and M. P. Jordan. 2006. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl. Opt. 45(34):8806–8814. doi:10.1364/AO.45.008806.
  • Ivleva, N. P., A. Messerer, X. Yang, R. Niessner, and U. Pöschl. 2007. Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system. Environ. Sci. Technol. 41 (10):3702–3707. doi:10.1021/es0612448.
  • Ivleva, N. P., R. Niessner, and U. Panne. 2005. Characterization and discrimination of pollen by Raman microscopy. Anal. Bioanal. Chem. 381 (1):261–267. doi:10.1007/s00216-004-2942-1.
  • Jayne, J. T., D. C. Leard, X. F. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33(1/2):49–70. doi:10.1080/027868200410840.
  • Jeys, T. H., W. D. Herzog, J. D. Hybl, R. N. Czerwinksi, and A. Sanchez. 2007. Advanced trigger development. Lincoln Lab. J. 17 :29–62.
  • Joshi, D., D. Kumar, A. K. Maini, and R. C. Sharma. 2013. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR. Spectrochim. Acta Part A 112 :446–456. doi:10.1016/j.saa.2013.04.082.
  • Kanaani, H., M. Hargreaves, Z. Ristovski, and L. Morawska. 2008. Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols. Atmos. Environ. 42 (30):7141–7154. doi:10.1016/j.atmosenv.2008.05.059.
  • Kawashima, S., B. Clot, T. Fujita, Y. Takahashi, and K. Nakamura. 2007. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmos. Environ. 41 (36):7987–7993. doi:10.1016/j.atmosenv.2007.09.019.
  • Kawashima, S., M. Thibaudon, S. Matsuda, T. Fujita, N. Lemonis, B. Clot, and G. Oliver. 2017. Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia 33 (3):351–362. doi:10.1007/s10453-017-9474-6.
  • Kaye, P. H., K. Aptowicz, R. K. Chang, V. Foot, and G. Videen. 2007. Angularly resolved elastic scattering from airborne particles. In Optics of biological particles, eds. A. Hoekstra, V. Maltsev, and G. Videen, 31–61. Dordrecht: Springer Netherlands.
  • Kaye, P. H., J. E. Barton, E. Hirst, and J. M. Clark. 2000. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl. Opt. 39 (21):3738–3745. doi:10.1364/AO.39.003738.
  • Kaye, P. H., W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington. 2005. Single particle multichannel bio-aerosol fluorescence sensor. Opt. Express 13 (10):3583–3593. doi:10.1364/OPEX.13.003583.
  • Kiselev, D., L. Bonacina, and J.-P. Wolf. 2011. Individual bioaerosol particle discrimination by multi-photon excited fluorescence. Opt. Express 19 (24):24516–24521. doi:10.1364/OE.19.024516.
  • Kiselev, D., L. Bonacina, and J.-P. Wolf. 2013. A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev. Sci. Instrum. 84 (3):033302. doi:10.1063/1.4793792.
  • Könemann, T., N. Savage, C. M. Beall, E. Rodriguez-Caballero, F. Ditas, M. Dorf, H. Harder, J. Lelieveld, D. Walter, B. Weber, et al. 2018a. Online bioaerosol and dust measurements during the AQABA research cruise around the Arabian peninsula. Paper presented at 10th International Aerosol Conference, St. Louis, Missouri, USA.
  • Könemann, T., N. Savage, T. Klimach, D. Walter, J. Fröhlich-Nowoisky, H. Su, U. Pöschl, J. A. Huffman, and C. Pöhlker. 2019. Spectral intensity bioaerosol sensor (SIBS): An instrument for spectrally resolved fluorescence detection of single particles in real time. Atmos. Meas. Tech. 12 (2):1337–1363. doi:10.5194/amt-12-1337-2019.
  • Könemann, T., N. J. Savage, J. A. Huffman, and C. Pöhlker. 2018. Characterization of steady-state fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods. Atmos. Meas. Tech. 11 (7):3987–4003. doi:10.5194/amt-11-3987-2018.
  • Kopczynski, K.,. M. Kwasny, Z. Mierczyk, and Z. Zawadzki. 2005. Laser induced fluorescence system for detection of biological agents: European project FABIOLA. Proceedings of the SPIE - The International Society for Optical Engineering. 5954: 0501–0512. doi:10.1117/12.623013.
  • Kühnemund, M., Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, D. Tseng, A. Ahlford, L. Mathot, T. Sjöblom, et al. 2017. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nature commun. 8 (1):13913. doi:10.1038/ncomms13913.
  • Lafuente, B., R. Downs, H. Yang, and N. Stone. 2015. The power of databases: The RRUFF project. In Highlights in mineralogical crystallography, eds. T. Armbruster and R. M. Danisi, 30. Vol. 1. Berlin: Walter de Gruyter.
  • Lai, C. W., M. Schwab, S. C. Hill, J. Santarpia, and Y.-L. Pan. 2016. Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles. Opt. Express 24 (11):11654–11667. doi:10.1364/OE.24.011654.
  • Laumbach, R. J., and H. M. Kipen. 2005. Bioaerosols and sick building syndrome: Particles, inflammation, and allergy. Curr. Opin. Allergy Clin. Immunol. 5 (2):135–139. doi:10.1097/01.all.0000162305.05105.d0.
  • Le, K. C., C. Lefumeux, and T. Pino. 2017. Differential Raman backscattering cross sections of black carbon nanoparticles. Sci Rep. 7 (1):17124. doi:10.1038/s41598-017-17300-6.
  • Li, L., Z. Huang, J. Dong, M. Li, W. Gao, H. Nian, Z. Fu, G. Zhang, X. Bi, P. Cheng, et al. 2011. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. Int. J. Mass Spectr. 303(2–3):118–124. doi:10.1016/j.ijms.2011.01.017.
  • Li, L., G. W. Mulholland, L. Windmuller, M. C. Owen, S. Kimoto, and D. Y. Pui. 2014. On the feasibility of a number concentration calibration using a wafer surface scanner. Aerosol Sci. Technol. 48 (7):747–757. doi:10.1080/02786826.2014.922162.
  • Lim, D. V., J. M. Simpson, E. A. Kearns, and M. F. Kramer. 2005. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 18 (4):583–607. doi:10.1128/CMR.18.4.583-607.2005.
  • Linnell, J. A., T. R. Vian, J. R. Morency, A. Dai, M. E. Bury, T. Sebastian, C. A. Aguilar, J. J. Lacirignola, and J. D. Eversole. 2016. Aerosol generation for stable, low-concentration delivery. US Patent US9254500B2, filed October 9, 2014, and issued February 9, 2016.
  • Lis, D. O., G. Mainelis, and R. L. Górny. 2008. Microbial air contamination in farmhouses – quantitative aspects. CLEAN – Soil, Air, Water 36 (7):551–555. doi:10.1002/clen.200800003.
  • Liu, P. S., R. Deng, K. A. Smith, L. R. Williams, J. T. Jayne, M. R. Canagaratna, K. Moore, T. B. Onasch, D. R. Worsnop, and T. Deshler. 2007. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer. Aerosol Sci. Technol. 41 (8):721–733. doi:10.1080/02786820701422278.
  • Lucas, R., L. Bunderson, N. Allan, and K. Lambson. 2018. Automated airborne particulate matter collection, imaging, identification, and analysis. US Patent WO2016073745A3, filed November 5, 2015, and issued September 29, 2016.
  • Lynch, E. J., M. I. Bogucki, P. J. Gardner, and L. Hyttinen. 2005. Biological agent warning sensor (baws): Laser-induced fluorescence as the joint biological point detection system trigger. In Chemical and biological sensing VI, ed. P. J. Gardner, 75–79. Orlando, FL: International Society for Optics and Photonics.
  • Mairhofer, J., K. Roppert, and P. Ertl. 2009. Microfluidic systems for pathogen sensing: A review. Sensors 9 (6):4804–4823. doi:10.3390/s90604804.
  • Mandrioli, P., P. Comtois, E. Dominguez Vilches, C. Galan Soldevilla, S. A. Isard, and L. Syzdek. 1998. Sampling: Principles and techniques, methods in aerobiology, 47–112. Italia: Pitagoras.
  • Martin, M. Z., M.-D. Cheng, and R. C. Martin. 1999. Aerosol measurement by laser-induced plasma technique: A review. Aerosol Sci. Technol. 31 (6):409–421. doi:10.1080/027868299303968.
  • Miguel, A. G., P. E. Taylor, J. House, M. M. Glovsky, and R. C. Flagan. 2006. Meteorological influences on respirable fragment release from Chinese elm pollen. Aerosol Sci. Technol. 40 (9):690–696. doi:10.1080/02786820600798869.
  • Morrical, B. D., M. Balaxi, and D. Fergenson. 2015. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry. int. j. Pharmaceutics 489(1–2):11–17. doi:10.1016/j.ijpharm.2015.04.040.
  • Morris, C. E., F. Conen, J. A. Huffman, V. Phillips, U. Pöschl, and D. C. Sands. 2014a. Bioprecipitation: A feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Global Change Biol. 20(2):341–351. doi:10.1111/gcb.12447.
  • Morris, D. R., J. Fatisson, A. L. Olsson, N. Tufenkji, and A. R. Ferro. 2014b. Real-time monitoring of airborne cat allergen using a qcm-based immunosensor. Sens. Actuators B: Chem. 190 :851–857. doi:10.1016/j.snb.2013.09.061.
  • Murphy, D. M. 2007. The design of single particle laser mass spectrometers. Mass Spectr. Rev. 26 (2):150–165. doi:10.1002/mas.20113.
  • Nasir, Z., C. Rolph, S. Collins, D. Stevenson, T. Gladding, E. Hayes, B. Williams, S. Khera, S. Jackson, A. Bennett, et al. 2018. A controlled study on the characterisation of bioaerosols emissions from compost. Atmosphere 9 (10):379. doi:10.3390/atmos9100379.
  • Navruz, I., A. F. Coskun, J. Wong, S. Mohammad, D. Tseng, R. Nagi, S. Phillips, and A. Ozcan. 2013. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab on a Chip 13 (20):4015–4023. doi:10.1039/c3lc50589h.
  • Novosselov, I. V., R. A. Gorder, J. A. Van Amberg, and P. C. Ariessohn. 2014. Design and performance of a low-cost micro-channel aerosol collector. Aerosol Sci. Technol. 48 (8):822–830. doi:10.1080/02786826.2014.932895.
  • Núñez, A., G. A. de Paz, A. Rastrojo, A. M. Garcia, A. Alcami, A. M. Gutierrez-Bustillo, and D. A. Moreno. 2016. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios. Int. Microbiol. 19 :1–13. doi:10.2436/20.1501.01.258.
  • Nyquist, R. A., C. L. Putzig, and M. A. Leugers. 1997. The handbook of infrared and Raman spectra of inorganic compounds and organic salts. San Diego, CA: Academic Press.
  • O'Connor, D. J., P. Lovera, D. Iacopino, A. O'Riordan, D. A. Healy, and J. R. Sodeau. 2014. Using spectral analysis and fluorescence lifetimes to discriminate between grass and tree pollen for aerobiological applications. Anal. Methods (6) :1633–1639. doi:10.1039/C3AY41093E.
  • Oteros, J., G. Pusch, I. Weichenmeier, U. Heimann, R. Möller, S. Röseler, C. Traidl-Hoffmann, C. Schmidt-Weber, and J. T. M. Buters. 2015. Automatic and online pollen monitoring. Int. Arch. Allergy Immunol. 167 (3):158–166. doi:10.1159/00046968.
  • Ozanne, C. M. P., D. Anhuf, S. L. Boulter, M. Keller, R. L. Kitching, C. Körner, F. C. Meinzer, A. W. Mitchell, T. Nakashizuka, P. L. S. Dias, et al. 2003. Biodiversity meets the atmosphere: A global view of forest canopies. Science. 301 (5630):183. doi:10.1126/science.1084507.
  • Pan, M., L. Carol, J. A. Lednicky, A. Eiguren-Fernandez, S. Hering, Z. H. Fan, and C.-Y. Wu. 2018. Collection of airborne bacteria and yeast through water-based condensational growth. Aerobiologia 34 (3):337–348. doi:10.1007/s10453-018-9517-7.
  • Pan, M., Eiguren‐Fernandez, A. H. Hsieh, N. Afshar, ‐Mohajer, S. Hering, J. Lednicky, Z. Hugh Fan, and C. Y. Wu. 2016. Efficient collection of viable virus aerosol through laminar‐flow, water‐based condensational particle growth. J. Appl. Microbiol. 120 (3):805–815. doi:10.1111/jam.1051.
  • Pan, Y.-L., V. Boutou, R. K. Chang, I. Ozden, K. Davitt, and A. V. Nurmikko. 2003. Application of light-emitting diodes for aerosol fluorescence detection. Opt. Lett. 28 (18):1707–1709. doi:10.1364/OL.28.001707.
  • Pan, Y-L, P. Cobler, S. Rhodes, A. Potter, T. Chou, S. Holler, R. K. Chang, R. G. Pinnick, and J.-P. Wolf. 2001. High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector. Rev. Sci. Instrum. 72 (3):1831–1836. doi:10.1063/1.1344179.
  • Pan, Y.-L., H. Huang, and R. K. Chang. 2012. Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263-and 351-nm laser at New Haven, CT, and Adelphi, MD. J. Quant. Spectrosc. Radiat. Transfer 113 :2213–2221. doi:10.1016/j.jqsrt.2012.07.028.
  • Pan, Y.-L., J. L. Santarpia, S. Ratnesar-Shumate, E. Corson, J. Eshbaugh, S. C. Hill, C. C. Williamson, M. Coleman, C. Bare, and S. Kinahan. 2014a. Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. J. Quant. Spectrosc. Radiat. Transfer 133 :538–550. doi:10.1016/j.jqsrt.2013.09.017.
  • Pan, Y. L., V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang. 2004. A puff of air sorts bioaerosols for pathogen identification. Aerosol Sci. Technol. 38 (6):598–602. doi:10.1080/02786820490465450.
  • Pan, Y. L., J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang. 2003. Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci. Technol. 37 (8):628–639. doi:10.1080/02786820390195433.
  • Pan, Y. L., S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang. 2010. Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Opt. Express 18 (12):12436–12457. doi:10.1364/OE.18.012436.
  • Pan, Y. L., S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, C. Williamson, K. Gurton, M. Felton, R. G. Pinnick, et al. 2014. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. Opt. Express 22 (7):8165–8189. doi:10.1364/OE.22.008165.
  • Pan, Y. L., S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger. 1999. Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser. Opt. Lett. 24 (2):116–118. doi:10.1364/OL.24.000116.
  • Pan, Y. L., R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang. 2007. Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J. Geophys. Res. 112 (D24):D24S19. doi:10.1029/2007JD008741.
  • Park, C. W., J.-W. Park, S. H. Lee, and J. Hwang. 2014. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection. Biosensors Bioelectronics 52 :379–383. doi:10.1016/j.bios.2013.09.015.
  • Pasteur, L. 1862. Sur les corpuscules organisés qui existent dans l'atmosphère, examen de la doctrine des générations spontanées, leçon professée à la société clinique de paris, le 19 mai 1861, par ml pasteur. C. Lahure.
  • Peck, J., L. A. Gonzalez, L. R. Williams, W. Xu, P. L. Croteau, M. T. Timko, J. T. Jayne, D. R. Worsnop, R. C. Miake-Lye, and K. A. Smith. 2016. Development of an aerosol mass spectrometer lens system for pm2.5. Aerosol Sci. Technol. 50 (8):781–789. doi:10.1080/02786826.2016.1190444.
  • Pereira, M. L., L. D. Knibbs, C. He, P. Grzybowski, G. R. Johnson, J. A. Huffman, S. C. Bell, C. E. Wainwright, D. L. Matte, F. H. Dominski, et al. 2017. Sources and dynamics of fluorescent particles in hospitals. Indoor Air 27 (5):988–1000. doi:10.1111/ina.12380.
  • Perring, A. E., J. P. Schwarz, D. Baumgardner, M. T. Hernandez, D. V. Spracklen, C. L. Heald, R. S. Gao, G. Kok, G. R. McMeeking, J. B. McQuaid, et al. 2015. Airborne observations of regional variation in fluorescent aerosol across the United States. J. Geophys. Res. Atmos. 120 (3):1153–1170. doi:10.1002/2014JD022495.
  • Pinnick, R. G., S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno. 1995. Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aerosol Sci. Technol 23 (4):653–664. doi:10.1080/02786829508965345.
  • Pinnick, R. G., S. C. Hill, Y. L. Pan, and R. K. Chang. 2004. Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon. Atmos. Environ. 38 (11):1657–1672. doi:10.1016/j.atmosenv.2003.11.017.
  • Pöhlker, C., J. A. Huffman, J.-D. Förster, and U. Pöschl. 2013. Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen. Atmos. Meas. Tech. 13 :3369–3392. doi:10.5194/amt-6-3369-2013.
  • Pöhlker, C., J. A. Huffman, and U. Pöschl. 2012. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5 (1):37–71. doi:10.5194/amt-5-37-2012.
  • Pöschl, U., S. T. Martin, B. Sinha, Q. Chen, S. S. Gunthe, J. A. Huffman, S. Borrmann, D. K. Farmer, R. M. Garland, G. Helas,et al. 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329 (5998):1513–1516. doi:10.1126/science.1191056.
  • Pöschl, U., and M. Shiraiwa. 2015. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem. Rev. 115 (10):4440–4475. doi:10.1021/cr500487s.
  • Pratt, K. A., P. J. DeMott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, C. H. Twohy, A. J. Prenni, and K. A. Prather. 2009. In situ detection of biological particles in cloud ice-crystals. Nature Geosci. 2 (6):398–400. doi:10.1038/ngeo521.
  • Pratt, K. A., J. E. Mayer, J. C. Holecek, R. C. Moffet, R. O. Sanchez, T. P. Rebotier, H. Furutani, M. Gonin, K. Fuhrer, Y. X. Su, et al. 2009. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem. 81 (5):1792–1800. doi:10.1021/ac801942r.
  • Primmerman, C. A. 2000. Detection of biological agents. Lincoln Lab. J. 12 :3–32.
  • Regan, J. F., A. J. Makarewicz, B. J. Hindson, T. R. Metz, D. M. Gutierrez, T. H. Corzett, D. R. Hadley, R. C. Mahnke, B. D. Henderer, J. W. Breneman Iv,et al. 2008. Environmental monitoring for biological threat agents using the autonomous pathogen detection system with multiplexed polymerase chain reaction. Anal. Chem. 80 (19):7422–7429. doi:10.1021/ac801125x.
  • Richardson, J. M., J. C. Aldridge, and A. B. Milstein. 2008. Polarimetric lidar signatures for remote detection of biological warfare agents. In Polarization: Measurement, analysis, and remote sensing viii, eds. D. B. Chenault and D. H. Goldstein. doi:10.1117/12.777833.
  • Robinson, E. S., R.-S. Gao, J. P. Schwarz, D. W. Fahey, and A. E. Perring. 2017. Fluorescence calibration method for single-particle aerosol fluorescence instruments. Atmos. Meas. Tech. 10 (5):1755. doi:10.5194/amt-10-1755-2017.
  • Robinson, N. H., J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher. 2013. Cluster analysis of WIBS single-particle bioaerosol data. Atmos. Meas. Tech. 6 (2):337–347. doi:10.5194/amt-6-337-2013.
  • Ronningen, T., J. Schuetter, J. Wightman, and A. Murdock. 2014. Raman spectroscopy for biological identification. Biological Identification: DNA Amplification Sequencing, Optical Sensing, Lab-On-Chip and Portable Systems:313.
  • Rosasco, G., E. Etz, and W. Cassatt. 1975. The analysis of discrete fine particles by Raman spectroscopy. Appl. Spectrosc. 29 (5):396–404. doi:10.1366/000370275774455752.
  • Rösch, P., M. Harz, K. D. Peschke, O. Ronneberger, H. Burkhardt, A. Schule, G. Schmauz, M. Lankers, S. Hofer, H. Thiele, et al. 2006. On-line monitoring and identification of bioaerosols. Anal. Chem. 78 (7):2163–2170. doi:10.1021/ac0514974.
  • Rosen, H., and T. Novakov. 1977. Raman scattering and the characterisation of atmospheric aerosol particles. Nature 266 (5604):708. doi:10.1038/266708a0.
  • Ruske, S., D. O. Topping, V. E. Foot, P. H. Kaye, W. R. Stanley, I. Crawford, A. P. Morse, and M. W. Gallagher. 2017. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer. Atmos. Meas. Tech. 10 (2):695. doi:10.5194/amt-10-695-2017.
  • Ruske, S., D. O. Topping, V. E. Foot, A. P. Morse, and M. W. Gallagher. 2018. Machine learning for improved data analysis of biological aerosol using the WIBS. Atmos. Meas. Tech. 11 (11):6203–6230. doi:10.5194/amt-11-6203-2018.
  • Russell, S. C., G. Czerwieniec, C. Lebrilla, H. Tobias, D. P. Fergenson, P. Steele, M. Pitesky, J. Horn, A. Srivastava, M. Frank, et al. 2004. Toward understanding the ionization of biomarkers from micrometer particles by bio-aerosol mass spectrometry. J. Amer. Soc. Mass Spectr. 15 (6):900–909. doi:10.1016/j.jasms.2004.02.013.
  • Saari, S.,. S. Järvinen, T. Reponen, J. Mensah-Attipoe, P. Pasanen, J. Toivonen, and J. Keskinen. 2016. Identification of single microbial particles using electro-dynamic balance assisted laser-induced breakdown and fluorescence spectroscopy. Aerosol Sci. Technol. 50 (2):126–132. doi:10.1080/02786826.2015.1134764.
  • Saari, S.,. J. Mensah-Attipoe, T. Reponen, A. M. Veijalainen, A. Salmela, P. Pasanen, and J. Keskinen. 2015. Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores. Indoor Air 25 (6):653–661. doi:10.1111/ina.12166.
  • Saito, Y., K. Ichihara, K. Morishita, K. Uchiyama, F. Kobayashi, and T. Tomida. 2018. Remote detection of the fluorescence spectrum of natural pollens floating in the atmosphere using a laser-induced-fluorescence spectrum (LIFS) lidar. Remote Sens. 10 (10):1533. doi:10.3390/rs10101533.
  • Santarpia, J. L., S. Ratnesar-Shumate, J. U. Gilberry, and J. J. Quizon. 2013. Relationship between biologically fluorescent aerosol and local meteorological conditions. Aerosol Sci. Technol. 47 (6):655–661. doi:10.1080/02786826.2013.781263.
  • Šantl-Temkiv, T.,. F. Carotenuto, B. Sikoparija, T. Maki, P. Amato, M. Yao, P. J. DeMott, T. C. J. Hill, C. E. Morris, C. Pöhlker, et al. 2019. Bioaerosol field measurements: Challenges and perspectives. Aerosol Sci. Technol. In Review.
  • Sarda-Estève, R., J. Vivarnick, D. Baisnee, C. Bohard, O. Favez, J.-M. Roux, and C. Bossuet. 2015. On-line quantification of anhydrosugars emitted in the atmosphere by high performance anion exchange chromatography with pulsed amperometric detection (hpaec-pad). Paper presented at the 34th Annual Conference of the American Association of Aerosol Research (AAAR), Minneapolis, MN USA.
  • Sassen, K. 2008. Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff. Geophys. Res. Lett. 35 (18):L18810. doi:10.1029/2008GL035085.
  • Šaulienė, I., L. Šukienė, G. Daunys, G. Valiulis, L. Vaitkevičius, P. Matavulj, S. Brdar, M. Panic, B. Sikoparija, B. Clot, et al. 2019. Automatic pollen recognition with the rapid-e particle counter: the first-level procedure, experience and next steps. Atmos. Meas. Tech. 12 (6):3435–3452. doi:10.5194/amt-12-3435-2019.
  • Sauvageat, E., Y. Zeder, F. Tummon, B. Clot, and B. Crouzy. 2019. Online pollen monitoring using digital holography.
  • Savage, N. J., and J. A. Huffman. 2018. Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques. Atmos. Meas. Tech. 11 (8):4929–4942. doi:10.5194/amt-11-4929-2018.
  • Savage, N. J., C. E. Krentz, T. Könemann, T. T. Han, G. Mainelis, C. Pöhlker, and J. A. Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–4302. doi:10.5194/amt-10-4279-2017.
  • Schmale, J., J. Schneider, E. Nemitz, Y. Tang, U. Dragosits, T. Blackall, P. Trathan, G. Phillips, M. Sutton, and C. Braban. 2013. Sub-Antarctic marine aerosol: Dominant contributions from biogenic sources. Atmos. Chem. Phys. 13 (17):8669–8694. doi:10.5194/acp-13-8669-2013.
  • Schmidt, M. S., and A. J. R. Bauer. 2010. Preliminary correlations of feature strength in spark-induced breakdown spectroscopy of bioaerosols with concentrations measured in laboratory analyses. Appl. Opt. 49 (13):C101–C109. doi:10.1364/AO.49.00C101.
  • Schmidt, S., J. Schneider, T. Klimach, S. Mertes, L. P. Schenk, P. Kupiszewski, J. Curtius, and S. Borrmann. 2017. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmos. Chem. Phys. 17 (1):575–594. doi:10.5194/acp-17-575-2017.
  • Schneider, J., F. Freutel, S. R. Zorn, Q. Chen, D. K. Farmer, J. L. Jimenez, S. T. Martin, P. Artaxo, A. Wiedensohler, and S. Borrmann. 2011. Mass- spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmos. Chem. Phys. 11 (22):11415–11429. doi:10.5194/acp-11-11415-2011.
  • Schumacher, C. J., C. Pöhlker, P. Aalto, V. Hiltunen, T. Petäjä, M. Kulmala, U. Pöschl, and J. A. Huffman. 2013. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmos. Chem. Phys. 13 (23):11987–12001. doi:10.5194/acp-13-11987-2013.
  • Seaver, M., J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle. 1999. Size and fluorescence measurements for field detection of biological aerosols. Aerosol Sci. Technol. 30 (2):174–185. doi:10.1080/027868299304769.
  • Seshadri, S.,. T. Han, V. Krumins, D. E. Fennell, and G. Mainelis. 2009. Application of ATP bioluminescence method to characterize performance of bioaerosol sampling devices. J. Aerosol Sci. 40 (2):113–121. doi:10.1016/j.jaerosci.2008.10.002.
  • Shang, L., Y. Cheng, and Y. Zhao. 2017. Emerging droplet microfluidics. Chem. Rev. 117 (12):7964–8040. doi:10.1021/acs.chemrev.6b00848.
  • Shen, X., R. Ramisetty, C. Mohr, W. Huang, T. Leisner, and H. Saathoff. 2018. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): Performance, reference spectra and classification of atmospheric samples. Atmos. Meas. Tech. 11 (4):2325. doi:10.5194/amt-11-2325-2018.
  • Shiraiwa, M., K. Ueda, A. Pozzer, G. Lammel, C. J. Kampf, A. Fushimi, S. Enami, A. M. Arangio, J. Fröhlich-Nowoisky, Y. Fujitani,et al. 2017. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51 (23):13545–13567. doi:10.1021/acs.est.7b04417.
  • Sivaprakasam, V., M. B. Hart, and J. D. Eversole. 2017. Surface enhanced Raman spectroscopy of individual suspended aerosol particles. J. Phys. Chem. C 121 (40):22326–22334. doi:10.1021/acs.jpcc.7b05310.
  • Sivaprakasam, V., A. L. Huston, C. Scotto, and J. D. Eversole. 2004. Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt. Express 12 (19):4457–4466. doi:10.1364/OPEX.12.004457.
  • Sivaprakasam, V., H.-B. Lin, A. L. Huston, and J. D. Eversole. 2011. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Opt. Express 19 (7):6191–6208. doi:10.1364/OE.19.006191.
  • Sivaprakasam, V., T. Pletcher, J. E. Tucker, A. L. Huston, J. McGinn, D. Keller, and J. D. Eversole. 2009. Classification and selective collection of individual aerosol particles using laser-induced fluorescence. Appl. Opt. 48 (4):B126–B136. doi:10.1364/AO.48.00B126.
  • Sofiev, M., P. Siljamo, H. Ranta, and A. Rantio-Lehtimäki. 2006. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. Int. J. Biometeorol. 50 (6):392–392. doi:10.1007/s00484-006-0027-x.
  • Sorensen, C. M., R. C. Flagan, U. Baltensperger, and D. Y. H. Pui. 2019. Grand challenges for aerosol science and technology. Aerosol Sci. Technol. 53 (7):731–734. doi:10.1080/02786826.2019.1611333.
  • Spurny, K. R. 1994. On the chemical detection of bioaerosols. J. Aerosol Sci. 25 (8):1533–1547. doi:10.1016/0021-8502(94)90223-2.
  • Stackman, E. C., E. B. Lambert, S. Mudd, and M. H. Soule. 1942. Aerobiology. Washington, D.C.: American Association for the Advancement of Science.
  • Steele, P. T., E. L. McJimpsey, K. R. Coffee, D. P. Fergenson, V. J. Riot, H. J. Tobias, B. W. Woods, E. E. Gard, and M. Frank. 2006. Characterization of ambient aerosols at the San Francisco International Airport using bioaerosol mass spectrometry. Proc. SPIE - Int. Soc. Opt. Eng. Vol. 6218. Paper presented at Defense and Security Symposium, Orlando (Kissimmee), Florida, United States. doi:10.1117/12.665155..
  • Sultana, C. M., H. Al-Mashat, and K. A. Prather. 2017. Expanding single particle mass spectrometer analyses for the identification of microbe signatures in sea spray aerosol. Anal. Chem. 89 (19):10162–10170. doi:10.1021/acs.analchem.7b00933.
  • Suski, K. J., D. M. Bell, N. Hiranuma, O. Möhler, D. Imre, and A. Zelenyuk. 2018. Activation of intact bacteria and bacterial fragments mixed with agar as cloud droplets and ice crystals in cloud chamber experiments. Atmos. Chem. Phys. 18 (23):17497–17513. doi:10.5194/acp-18-17497-2018.
  • Swanson, B. E., and J. A. Huffman. 2018. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Opt. Express 26 (3):3646–3660. doi:10.1364/OE.26.003646.
  • Swanson, B. E., and J. A. Huffman. 2019. Pollen clustering strategies using a newly developed single-particle fluorescence spectrometer. Aerosol Sci. Technol. In Review.
  • Taylor, P., and H. Jonsson. 2004. Thunderstorm asthma. Curr. Allergy Asthma Rep. 4 (5):409–413. doi:10.1007/s11882-004-0092-3.
  • Thomson, D. S., M. E. Schein, and D. M. Murphy. 2000. Particle analysis by laser mass spectrometry WB-57F instrument overview. Aerosol Sci. Technol. 33 (1–2):153–169. doi:10.1080/027868200410903.
  • Thurn, R., and W. Kiefer. 1984. Raman-microsampling technique applying optical levitation by radiation pressure. Appl. Spectrosc. 38 (1):78–83. doi:10.1366/0003702844554440.
  • Tobias, H. J., M. P. Schafer, M. Pitesky, D. P. Fergenson, J. Horn, M. Frank, and E. E. Gard. 2005. Bioaerosol mass spectrometry for rapid detection of individual airborne Mycobacterium tuberculosis H37Ra particles. Appl. Environ. Microbiol. 71 (10):6086–6095. doi:10.1128/AEM.71.10.6086-6095.2005.
  • Toprak, E., and M. Schnaiter. 2013. Fluorescent biological aerosol particles measured with the waveband integrated bioaerosol sensor WIBS-4: Laboratory tests combined with a one year field study. Atmos. Chem. Phys. 13 (1):225–243. doi:10.5194/acp-13-225-2013.
  • Tsuruzoe, K., and K. Hara. 2015. Micro sensors for real-time monitoring of mold spores and pollen. Setubal: Scitepress.
  • Tysk, S. M., J. P. D'angelo, and W. D. Herzog. 2015. Spark-induced breakdown spectroscopy electrode assembly. US Patent US9030659B2, filed July 23, 2013, and issued May 12, 2015.
  • Vallery-Radot, R., and E. E. P. Hamilton. 1885. Louis Pasteur: His life and labours. Longmans, Green, & Company. https://books.google.com/books?hl=en&lr=&id=5csptuG7W18C&oi=fnd&pg=PR11&dq=Louis+Pasteur:+His+Life+and+Labours&ots=vRAvoQ8Ee5&sig=Ra-IKO2SqlnlHi-0pWBJlcgl5ps#v=onepage&q=Louis%20Pasteur%3A%20His%20Life%20and%20Labours&f=false
  • Valsan, A. E., R. Ravikrishna, C. V. Biju, C. Pöhlker, V. R. Després, J. A. Huffman, U. Pöschl, and S. S. Gunthe. 2016. Fluorescent biological aerosol particle measurements at a tropical high-altitude site in Southern India during the southwest monsoon season. Atmos. Chem. Phys. 16 (15):9805–9830. doi:10.5194/acp-16-9805-2016.
  • Vapnik, V. N. 1998. Statistical learning theory. New York: Wiley Intersciences.
  • Vehring, R., and G. Schweiger. 1998. Dispersive Raman spectroscopy on soot particles. J. Aerosol Sci. 29 :S1251–S1252. doi:10.1016/S0021-8502(98)90808-4.
  • Vogel, H., A. Pauling, and B. Vogel. 2008. Numerical simulation of birch pollen dispersion with an operational weather forecast system. Int. J. Biometeorol. 52 (8):805–814. doi:10.1007/s00484-008-0174-3.
  • Wang, C. J., Y. L. Pan, S. C. Hill, and B. Redding. 2015. Photophoretic trapping-raman spectroscopy for single pollens and fungal spores trapped in air. J. Quant. Spectrosc. Radiat. Transfer 153 :4–12. doi:10.1016/j.jqsrt.2014.11.004.
  • Wei, K., Z. L. Zou, Y. H. Zheng, J. Li, F. X. Shen, C. Y. Wu, Y. S. Wu, M. Hu, and M. S. Yao. 2016. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550 :751–759. doi:10.1016/j.scitotenv.2016.01.137.
  • Wei, Q., W. Luo, S. Chiang, T. Kappel, C. Mejia, D. Tseng, R. Y. L. Chan, E. Yan, H. Qi, F. Shabbir, et al. 2014. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 8 (12):12725–12733. doi:10.1021/nn505821y.
  • Wlodarski, M., M. Kaliszewski, M. Kwasny, K. Kopczynski, Z. Zawadzki, Z. Mierczyk, J. Mlynczak, E. Trafny, and M. Szpakowska. 2006. Fluorescence excitation-emission matrices of selected biological materials. In Optically based biological and chemical detection for defence III. eds. J. C. Carrano and A. Zukauskas, U18–U29. Stockholm, SWEDEN: SPIE.
  • Wolf, R., I. El-Haddad, J. Slowik, K. Dällenbach, E. Bruns, J. Vasilescu, U. Baltensperger, and A. Prévôt. 2017. Contribution of bacteria-like particles to pm2. 5 aerosol in urban and rural environments. Atmos. Environ. 160 :97–106. doi:10.1016/j.atmosenv.2017.04.001.
  • Wolf, R., J. Slowik, C. Schaupp, P. Amato, H. Saathoff, O. Möhler, A. Prévôt, and U. Baltensperger. 2015. Characterization of ice‐nucleating bacteria using on‐line electron impact ionization aerosol mass spectrometry. J. Mass Spectrom. 50 (4):662–671. doi:10.1002/jms.3573.
  • Womack, A. M., B. J. M. Bohannan, and J. L. Green. 2010. Biodiversity and biogeography of the atmosphere. Philosoph. Trans. Roy. Soc. B: Biol Sci. 365 (1558):3645–3653. doi:10.1098/rstb.2010.0283.
  • Wright, T. P., J. D. Hader, G. R. McMeeking, and M. D. Petters. 2014. High relative humidity as a trigger for widespread release of ice nuclei. Aerosol Sci. Technol. 48 (11):i–v. doi:10.1080/02786826.2014.968244.
  • Wu, Y.-C., A. Shiledar, Y.-C. Li, J. Wong, S. Feng, X. Chen, C. Chen, K. Jin, S. Janamian, and Z. Yang. 2017. Air quality monitoring using mobile microscopy and machine learning. Light: Sci. Appl. 6 :e17046. doi:10.1038/lsa.2017.46.
  • Wu, Y., A. Calis, Y. Luo, C. Chen, M. Lutton, Y. Rivenson, X. Lin, H. C. Koydemir, Y. Zhang, H. Wang,et al. 2018. Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 5 (11):4617–4627. doi:10.1021/acsphotonics.8b01109.
  • Xu, Z., Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao. 2011. Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Sci. Technol. 45 (11):1337–1349. doi:10.1080/02786826.2011.593591.
  • Zawadowicz, M. A., K. D. Froyd, D. M. Murphy, and D. J. Cziczo. 2017. Improved identification of primary biological aerosol particles using single-particle mass spectrometry. Atmos. Chem. Phys. 17 (11):7193–7212. doi:10.5194/acp-17-7193-2017.
  • Zawadowicz, M. A., K. D. Froyd, A. E. Perring, D. M. Murphy, D. V. Spracklen, C. L. Heald, P. R. Buseck, and D. J. Cziczo. 2019. Model-measurement consistency and limits of bioaerosol abundance over the continental United States. Atmos. Chem. Phys. Discuss. 2019 :1–19. doi:10.5194/acp-2019-101.
  • Zelenyuk, A., and D. Imre. 2005. Single particle laser ablation time-of-flight mass spectrometer: An introduction to splat. Aerosol Sci. Technol. 39 (6):554–568. doi:10.1080/027868291009242.
  • Zelenyuk, A., D. Imre, J. Wilson, Z. Zhang, J. Wang, and K. Mueller. 2015. Airborne single particle mass spectrometers (splat ii & minisplat) and new software for data visualization and analysis in a geo-spatial context. J. Amer. Soc. Mass Spectrometry 26 (2):257–270. doi:10.1007/s13361-014-1043-4.
  • Zhang, G., X. Bi, L. Y. Chan, L. Li, X. Wang, J. Feng, G. Sheng, J. Fu, M. Li, and Z. Zhou. 2012. Enhanced trimethylamine-containing particles during fog events detected by single particle aerosol mass spectrometry in urban Guangzhou, China. Atmos. Environ. 55 :121–126. doi:10.1016/j.atmosenv.2012.03.038.