1,031
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Measuring and optimization of energy transfer to the interelectrode gaps during the synthesis of nanoparticles in a spark discharge

ORCID Icon, ORCID Icon &
Pages 1393-1403 | Received 24 Mar 2019, Accepted 16 Aug 2019, Published online: 19 Sep 2019

References

  • Arsenov, P. V., A. A. Efimov, and V. V. Ivanov. 2018. Effect of methods of changing in focusing ratio on line geometry in aerosol jet printing. Key Eng. Mater. 779:159–164. doi: 10.4028/www.scientific.net/KEM.779.159.
  • Bazelyan, E. M., and Y. P. Raizer. 1997. Spark discharge. New York: CRC press.
  • Bogomaz, A. A., A. V. Budin, V. A. Kolikov, M. E. Pinchuk, A. A. Pozubenkov, and F. G. Rutberg. 2002. Influence of the cathode and anode jets on the properties of a high-current electric arc. Tech. Phys. 47 (1):26–33. doi: 10.1134/1.1435886.
  • Byeon, J. H., J. H. Park, and J. Hwang. 2008. Spark generation of monometallic and bimetallic aerosol nanoparticles. J. Aerosol Sci. 39 (10):888–896. doi: 10.1016/j.jaerosci.2008.05.006.
  • Chakraborty, G., A. Sengupta, F. G. Requejo, and C. K. Sarkar. 2011. Study of the relative performance of silicon and germanium nanoparticles embedded gate oxide in metal–oxide–semiconductor memory devices. J. Appl. Phys. 109 (6):064504. doi: 10.1063/1.3555087.
  • Cundall, C. M., and J. D. Craggs. 1955. Electrode vapour jets in spark discharges. Spectrochim. Acta 7 (3):149–164. doi: 10.1016/0371-1951(55)80018-5.
  • Efimov, A. A., P. V. Arsenov, N. V. Protas, K. N. Minkov, M. N. Urazov, and V. V. Ivanov. 2018. Dry aerosol jet printing of conductive silver lines on a heated silicon substrate. IOP Conf. Series Mater. Sci. Eng. 307 (1):012082. doi: 10.1088/1757-899X/307/1/012082.
  • Evans, D. E., R. M. Harrison, and J. G. Ayres. 2003. The generation and characterization of metallic and mixed element aerosols for human challenge studies. Aerosol Sci. Technol. 37 (12):975. doi: 10.1080/02786820300897.
  • Feng, J., G. Biskos, and A. Schmidt-Ott. 2015. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process. Scientific Rep. 5 (1):15788. doi: 10.1038/srep15788.
  • Gashkov, M. A., N. M. Zubarev, O. V. Zubareva, G. A. Mesyats, and I. V. Uimanov. 2016. Model of liquid-metal splashing in the cathode spot of a vacuum arc discharge. J. Exp. Theor. Phys. 122 (4):776–786. doi: 10.1134/S1063776116040051.
  • Guo, X., A. Gutsche, M. Wagner, M. Seipenbusch, and H. Nirschl. 2013. Simultaneous SWAXS study of metallic and oxide nanostructured particles. J. Nanopart. Res. 15 (4):1559. doi: 10.1007/s11051-013-1559-8.
  • Hallberg, R. T., L. Ludvigsson, C. Preger, B. O. Meuller, K. A. Dick, and M. E. Messing. 2018. Hydrogen-assisted spark discharge generated metal nanoparticles to prevent oxide formation. Aerosol Sci. Technol. 52 (3):347–358. doi: 10.1080/02786826.2017.1411580.
  • Han, K., W. Kim, J. Yu, J. Lee, H. Lee, C. G. Woo, and M. Choi. 2012. A study of pin-to-plate type spark discharge generator for producing unagglomerated nanoaerosols. J. Aerosol Sci. 52:80–88. doi: 10.1016/j.jaerosci.2012.05.002.
  • Helsper, C., W. Mölter, F. Löffler, C. Wadenpohl, S. Kaufmann, and G. Wenninger. 1993. Investigations of a new aerosol generator for the production of carbon aggregate particles. Atmos. Environ. A. Gen. Topics 27 (8):1271–1275. doi: 10.1016/0960-1686(93)90254-V.
  • Ivanov, V. V., A. A. Efimov, D. A. Myl’nikov, and A. A. Lizunova. 2018. Synthesis of nanoparticles in a pulsed-periodic gas discharge and their potential applications. Russian J. Phys. Chem. A 92 (3):607–612. doi: 10.1134/S0036024418030093.
  • Ivanov, V. V., A. A. Efimov, D. A. Mylnikov, A. A. Lizunova, A. V. Bagazeev, I. V. Beketov, and S. V. Shcherbinin. 2016. High-Efficiency synthesis of nanoparticles in a repetitive multigap spark discharge generator. Tech. Phys. Lett. 42 (8):876–878. doi: 10.1134/S106378501608023X.
  • Juttner, B. 2001. Cathode spots of electric arcs. J. Phys. D Appl. Phys. 34 :R103–R123. stacks.iop.org/JPhysD/34/R103.
  • Kohut, A., L. Ludvigsson, B. O. Meuller, K. Deppert, M. E. Messing, G. Galbács, and Z. Geretovszky. 2017. From plasma to nanoparticles: optical and particle emission of a spark discharge generator. Nanotechnology 28(47):475603. doi: 10.1088/1361-6528/aa8f84.
  • Kohut, A., M. Wagner, M. Seipenbusch, Z. Geretovszky, and G. Galbács. 2018. Surface features and energy considerations related to the erosion processes of Cu and Ni electrodes in a spark discharge nanoparticle generator. J. Aerosol Sci. 119:51–61. doi: 10.1016/j.jaerosci.2018.02.005.
  • Krasnikov, D. V., B. Y. Zabelich, V. Y. Iakovlev, A. P. Tsapenko, S. A. Romanov, A. A. Alekseeva, A. K. Grebenko, and A. G. Nasibulin. 2019. A spark discharge generator for scalable aerosol CVD synthesis of single-walled carbon nanotubes with tailored characteristics. Chem. Eng. J. 372:462–470. doi: 10.1016/j.cej.2019.04.173.
  • Lafont, U., L. Simonin, N. S. Tabrizi, A. Schmidt-Ott, and E. M. Kelder. 2009. Synthesis of nanoparticles of Cu, Sb, Sn, SnSb and Cu2Sb by densification and atomization process. J. Nanosci. Nanotechnol. 9 (4):2546–2552. doi: 10.1166/jnn.2009.dk13.
  • Maisser, A., K. Barmpounis, M. B. Attoui, G. Biskos, and A. Schmidt-Ott. 2015. Atomic cluster generation with an atmospheric pressure spark discharge generator. Aerosol Sci. Technol. 49(10):886–894. doi: 10.1080/02786826.2015.1080812.
  • Mesyats, G. A. 2004. Pulsed power engineering and electronics. Moscow: Nauka.
  • Myl’nikov, D. A., V. V. Ivanov, A. A. Efimov, and I. V. Beketov. 2016. A technique for measurements of energy release in pulsed gas discharge in short interelectrode gaps. Measur. Techniq. 58 (12):1367. doi: 10.1007/s11018-016-0900-x.
  • Mylnikov, D., A. Lizunova, V. Borisov, S. Paranin, and V. Ivanov. 2018. Germanium nanoparticles, synthesis in spark discharge. Oriental J. Chem. 34(5):2677–2680. doi: 10.13005/ojc/340563.
  • Noh, S. R., D. Lee, S. J. Park, D. S. Kim, and M. Choi. 2017. High throughput nanoparticle generation utilizing High-Frequency spark discharges via rapid spark plasma removal. Aerosol Sci. Technol. 51(1):116–122. doi: 10.1080/02786826.2016.1239814.
  • Ott, H. W. 1976. Noise reduction techniques in electronic systems. New York: John Wiley & Sons Canada, Limited.
  • Pai, D. Z., K. K. Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko, and C. O. Laux. 2013. Energy efficiency in nanoscale synthesis using nanosecond plasmas. Scientific Rep. 3 (1):3. doi: 10.1038/srep01221.
  • Palomares, J. M., A. Kohut, G. Galbács, R. Engeln, and Z. Geretovszky. 2015. A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge. J. Appl. Phys. 118(23):233305. doi: 10.1063/1.4937729.
  • Parkevich, E. V., G. V. Ivanenkov, M. A. Medvedev, A. I. Khirianova, A. S. Selyukov, A. V. Agafonov, A. R. Mingaleev, T. A. Shelkovenko, and S. A. Pikuz. 2018. Mechanisms responsible for the initiation of a fast breakdown in an atmospheric discharge. Plasma Sources Sci. Technol. 27 (11):11LT01. doi: 10.1088/1361-6595/aaebdb.
  • Pfeiffer, T. V. 2014. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials. PhD. Diss., Delft University of Technology. p. 32.
  • Pfeiffer, T. V., J. Feng, and A. Schmidt-Ott. 2014. New developments in spark production of nanoparticles. Adv. Powder Technol. 25 (1):56–70. doi: 10.1016/j.apt.2013.12.005.
  • Rai, M., A. P. Ingle, S. Birla, A. Yadav, and C. A. D. Santos. 2016. Strategic role of selected noble metal nanoparticles in medicine. Critic. Rev. Microbiol. 42 (5):696–719. doi: 10.3109/1040841X.2015.1018131.
  • Schwab, A. J. 1972. High-voltage measurement techniques. Cambridge, MA: M.I.T. Press.
  • Slotte, M., and R. Zevenhoven. 2017. Energy efficiency and scalability of metallic nanoparticle production using arc/spark discharge. Energies 10 (10):1605. doi: 10.3390/en10101605.
  • Tabrizi, N. S., M. Ullmann, V. A. Vons, U. Lafont, and A. Schmidt-Ott. 2009. Generation of nanoparticles by spark discharge. J. Nanopart. Res. 11 (2):315–332.
  • Vons, V. A., L. C. Smet, D. Munao, A. Evirgen, E. M. Kelder, and A. Schmidt-Ott. 2011. Silicon nanoparticles produced by spark discharge. J. Nanopart. Res. 13 (10):4867–4879. doi: 10.1007/s11051-011-0466-0.
  • Wagner, M., A. Kohut, Z. Geretovszky, M. Seipenbusch, and G. Galbács. 2016. Observation of fine-ordered patterns on electrode surfaces subjected to extensive erosion in a spark discharge. J. Aerosol Sci. 93:16–20. doi: 10.1016/j.jaerosci.2015.11.008.
  • Yokomizu, Y., T. Matsumura, R. Henmi, and Y. Kito. 1996. Total voltage drops in electrode fall regions of, argon and air arcs in current range from 10 to 20 000 A. J. Phys. D Appl. Phys. 29 (5):1260. doi: 10.1088/0022-3727/29/5/020.
  • Zhong, S., N. Miao, Q. Yu, and W. Cao. 2015. Energy measurement of spark discharge using different triggering methods and inductance loads. J. Electrostat. 73:97–102. doi: 10.1016/j.elstat.2014.10.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.